Difference between revisions of "2020 AIME II Problems/Problem 11"
Topnotchmath (talk | contribs) m (→See Also) |
m (→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let <math>P( | + | Let <math>P(x) = x^2 - 3x - 7</math>, and let <math>Q(x)</math> and <math>R(x)</math> be two quadratic polynomials also with the coefficient of <math>x^2</math> equal to <math>1</math>. David computes each of the three sums <math>P + Q</math>, <math>P + R</math>, and <math>Q + R</math> and is surprised to find that each pair of these sums has a common root, and these three common roots are distinct. If <math>Q(0) = 2</math>, then <math>R(0) = \frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>. |
==Solution 1== | ==Solution 1== |
Revision as of 03:05, 8 June 2020
Problem
Let , and let and be two quadratic polynomials also with the coefficient of equal to . David computes each of the three sums , , and and is surprised to find that each pair of these sums has a common root, and these three common roots are distinct. If , then , where and are relatively prime positive integers. Find .
Solution 1
Let and . We can write the following: Let the common root of be ; be ; and be . We then have that the roots of are , the roots of are , and the roots of are .
By Vieta's, we have:
Subtracting from , we get . Adding this to , we get . This gives us that from . Substituting these values into and , we get and . Equating these values, we get . Thus, our answer is . ~ TopNotchMath
Solution 2
Let have shared root , have shared root , and the last pair having shared root . We will now set , and . We wish to find , and now we compute . From here, we equate coefficients. This means . Now, . Finally, we know that
Video Solution
https://youtu.be/BQlab3vjjxw ~ CNCM
See Also
2020 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.