Difference between revisions of "Semiprime"
(→Basic Properties) |
(→Examples) |
||
Line 2: | Line 2: | ||
==Examples== | ==Examples== | ||
− | *<math>9</math> is an example of a semiprime as it is the product of two threes. <math>3 | + | *<math>9</math> is an example of a semiprime as it is the product of two threes. <math>3*3=9</math>. |
*<math>10</math> is also an example as it is obtained by <math>5*2</math>. | *<math>10</math> is also an example as it is obtained by <math>5*2</math>. | ||
Other examples include: <math>25</math>, <math>15</math>, <math>39</math>, <math>221</math>, <math>437</math>, and <math>1537</math>. | Other examples include: <math>25</math>, <math>15</math>, <math>39</math>, <math>221</math>, <math>437</math>, and <math>1537</math>. |
Latest revision as of 18:05, 28 May 2020
In mathematics, a semiprime is a number that is the product of two not necessarily distinct primes. These integers are important in many contexts, including cryptography.
Examples
is an example of a semiprime as it is the product of two threes.
.
is also an example as it is obtained by
.
Other examples include: ,
,
,
,
, and
.
Examples of non-semiprimes
, as it is only a prime number.
, not a semiprime because it can obtained by
or
.
Basic Properties
Via the Sieve of Sundaram formulation of: being composite any time
, as
, we can show that if and only if
are both not composite producing then
is a semiprime.
Odd semiprimes, are able to be expressed as a difference of squares, like all other numbers that are products of numbers of same parity.
See Also
This article is a stub. Help us out by expanding it.