Difference between revisions of "2010 AMC 10B Problems/Problem 8"

 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== Problem==
+
#redirect [[2010 AMC 12B Problems/Problem 3]]
 
 
A ticket to a school play cost <math>x</math> dollars, where <math>x</math> is a whole number. A group of 9th graders buys tickets costing a total of <math>\textdollar 48</math>, and a group of 10th graders buys tickets costing a total of <math>\textdollar 64</math>. How many values for <math>x</math> are possible?
 
 
 
<math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5</math>
 
 
 
==Solution==
 
 
 
We see how many common integer factors <math>48</math> and <math>64</math> share.
 
Of the factors of <math>48</math> - <math>1, 2, 3, 4, 6, 8, 12, 16, 24, 48</math>; only <math>1, 2, 4, 8,</math> and <math>16</math> are factors of <math>64</math>.
 
So there are <math>\boxed{\textbf{(E)}\ 5}</math> possibilities for the ticket price.
 
 
 
==See Also==
 
{{AMC10 box|year=2010|ab=B|num-b=7|num-a=9}}
 

Latest revision as of 19:36, 26 May 2020