Difference between revisions of "2010 AMC 10A Problems/Problem 24"

(Created page with '== Problem == The number obtained from the last two nonzero digits of <math>90!</math> is equal to <math>n</math>. What is <math>n</math>? <math>\textbf{(A)}\ 12 \qquad \textbf…')
 
(Redirected page to 2010 AMC 12A Problems/Problem 23)
(Tag: New redirect)
 
(11 intermediate revisions by 6 users not shown)
Line 1: Line 1:
== Problem ==
+
#REDIRECT [[2010_AMC_12A_Problems/Problem_23]]
 
 
The number obtained from the last two nonzero digits of <math>90!</math> is equal to <math>n</math>. What is <math>n</math>?
 
 
 
<math>\textbf{(A)}\ 12 \qquad \textbf{(B)}\ 32 \qquad \textbf{(C)}\ 48 \qquad \textbf{(D)}\ 52 \qquad \textbf{(E)}\ 68</math>
 
 
 
== Solution ==
 
 
 
We will use the fact that for any integer <math>n</math>,
 
<cmath>\begin{align*}(5n+1)(5n+2)(5n+3)(5n+4)&=[(5n+4)(5n+1)][(5n+2)(5n+3)]\\
 
&=(25n^2+25n+4)(25n^2+25n+6)\equiv 4\cdot 6\\
 
&=24\pmod{25}\equiv -1\pmod{25}.\end{align*}</cmath>
 
 
 
First, we find that the number of factors of <math>10</math> in <math>90!</math> is equal to <math>\left\lfloor \frac{90}5\right\rfloor+\left\lfloor\frac{90}{25}\right\rfloor=18+3=21</math>. Let <math>N=\frac{90!}{10^{21}}</math>. The <math>n</math> we want is therefore the last two digits of <math>N</math>, or <math>N\pmod{100}</math>. Since there is clearly an excess of factors of 2, we know that <math>N\equiv 0\pmod 4</math>, so it remains to find <math>N\pmod{25}</math>.
 
 
 
If we divide <math>N</math> by <math>5^{21}</math> by taking out all the factors of <math>5</math> in <math>N</math>, we can write <math>N</math> as <math>\frac M{2^{21}}</math> where
 
<cmath>M=1\cdot 2\cdot 3\cdot 4\cdot 1\cdot 6\cdot 7\cdot 8\cdot 9\cdot 2\cdots 89\cdot 18,</cmath>
 
where every multiple of 5 is replaced by the number with all its factors of 5 removed. Specifically, every number in the form <math>5n</math> is replaced by <math>n</math>, and every number in the form <math>25n</math> is replaced by <math>n</math>.
 
 
 
The number <math>M</math> can be grouped as follows:
 
 
 
<cmath>\begin{align*}M= &(1\cdot 2\cdot 3\cdot 4)(6\cdot 7\cdot 8\cdot 9)\cdots(86\cdot 87\cdot 88\cdot 89)\\
 
&\cdot (1\cdot 2\cdot 3\cdot 4)(6\cdot 7\cdot 8\cdot 9)\cdots (16\cdot 17\cdot 18) \\
 
&\cdot (1\cdot 2\cdot 3).\end{align*}</cmath>
 
 
 
Using the identity at the beginning of the solution, we can reduce <math>M</math> to
 
 
 
<cmath>\begin{align*}M&\equiv(-1)^{18} \cdot (-1)^3(16\cdot 17\cdot 18) \cdot (1\cdot 2\cdot 3) \\
 
&= 1\cdot -21\cdot 6\\
 
&= -1\pmod{25} =24\pmod{25}.\end{align*}</cmath>
 
 
 
Using the fact that <math>2^{10}=1024\equiv -1\pmod{25}</math> (or simply the fact that <math>2^{21}=2097152</math> if you have your powers of 2 memorized), we can deduce that <math>2^{21}\equiv 2\pmod{25}</math>. Therefore <math>N=\frac M{2^{21}}\equiv \frac {24}2\pmod{25}=12\pmod{25}</math>.
 
 
 
Finally, combining with the fact that <math>N\equiv 0\pmod 4</math> yields <math>n=\boxed{\textbf{(A)}\ 12}</math>.
 
 
 
== See also ==
 
{{AMC10 box|year=2010|num-b=23|num-a=25|ab=A}}
 
 
 
[[Category:Intermediate Number Theory Problems]]
 

Latest revision as of 12:28, 26 May 2020