Difference between revisions of "1953 AHSME Problems/Problem 47"

(Created page with "sdasSss")
 
(Solution)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
sdasSss
+
==Problem==
 +
 
 +
If <math>x>0</math>, then the correct relationship is:
 +
 
 +
<math>\textbf{(A)}\ \log (1+x) = \frac{x}{1+x} \qquad
 +
\textbf{(B)}\ \log (1+x) < \frac{x}{1+x} \\
 +
\textbf{(C)}\ \log(1+x) > x\qquad
 +
\textbf{(D)}\ \log (1+x) < x\qquad
 +
\textbf{(E)}\ \text{none of these}  </math>
 +
 
 +
==Solution 1(Cheap)==
 +
Plug in <math>x=9</math>. Then, you can see that the answer is <math>\fbox{D}</math>.
 +
 
 +
==See Also==
 +
 
 +
{{AHSME 50p box|year=1953|num-b=46|num-a=48}}
 +
 
 +
{{MAA Notice}}

Latest revision as of 17:51, 22 April 2020

Problem

If $x>0$, then the correct relationship is:

$\textbf{(A)}\ \log (1+x) = \frac{x}{1+x} \qquad \textbf{(B)}\ \log (1+x) < \frac{x}{1+x} \\  \textbf{(C)}\ \log(1+x) > x\qquad \textbf{(D)}\ \log (1+x) < x\qquad \textbf{(E)}\ \text{none of these}$

Solution 1(Cheap)

Plug in $x=9$. Then, you can see that the answer is $\fbox{D}$.

See Also

1953 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 46
Followed by
Problem 48
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png