Difference between revisions of "1953 AHSME Problems/Problem 39"

(/Solution/)
 
(Solution)
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
==Problem==
 +
 +
The product, <math>\log_a b \cdot \log_b a</math> is equal to:
 +
 +
<math>\textbf{(A)}\ 1 \qquad
 +
\textbf{(B)}\ a \qquad
 +
\textbf{(C)}\ b \qquad
 +
\textbf{(D)}\ ab \qquad
 +
\textbf{(E)}\ \text{none of these}    </math>
 +
 +
==Solution==
 
<cmath>a^x=b</cmath>
 
<cmath>a^x=b</cmath>
 
<cmath>b^y=a</cmath>
 
<cmath>b^y=a</cmath>
Line 4: Line 15:
 
<cmath>xy=1</cmath>
 
<cmath>xy=1</cmath>
 
<cmath>\log_a b\log_b a=1</cmath>
 
<cmath>\log_a b\log_b a=1</cmath>
As a result, the answer should be 1 \boxed{A}.
+
As a result, the answer should be <math>\boxed{\textbf{(A) }1}</math>.
 +
 
 +
==Solution 2==
 +
Apply the change of base formula to  <math>\log_a b</math> and <math>\log_b a</math>. For simplicity, let us convert to base-10 log.
 +
By change of base, the expression becomes <math>\frac{\log b}{\log a} * \frac{\log a}{\log b} = \boxed{\textbf{(A) }1}</math>.
 +
 
 +
==See Also==
 +
{{AHSME 50p box|year=1953|num-b=38|num-a=40}}
 +
 
 +
{{MAA Notice}}

Latest revision as of 16:57, 22 April 2020

Problem

The product, $\log_a b \cdot \log_b a$ is equal to:

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ a \qquad \textbf{(C)}\ b \qquad \textbf{(D)}\ ab \qquad \textbf{(E)}\ \text{none of these}$

Solution

\[a^x=b\] \[b^y=a\] \[{a^x}^y=a\] \[xy=1\] \[\log_a b\log_b a=1\] As a result, the answer should be $\boxed{\textbf{(A) }1}$.

Solution 2

Apply the change of base formula to $\log_a b$ and $\log_b a$. For simplicity, let us convert to base-10 log. By change of base, the expression becomes $\frac{\log b}{\log a} * \frac{\log a}{\log b} = \boxed{\textbf{(A) }1}$.

See Also

1953 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 38
Followed by
Problem 40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png