Difference between revisions of "1983 AIME Problems/Problem 14"
(→Problem: editted in the figure) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
In the adjoining figure, two circles with radii <math>6</math> and <math>8</math> are drawn with their centers <math>12</math> units apart. At <math>P</math>, one of the points of intersection, a line is drawn in sich a way that the chords <math>QP</math> and <math>PR</math> have equal length. (<math>P</math> is the midpoint of <math>QR</math>) Find the square of the length of <math>QP</math>. | In the adjoining figure, two circles with radii <math>6</math> and <math>8</math> are drawn with their centers <math>12</math> units apart. At <math>P</math>, one of the points of intersection, a line is drawn in sich a way that the chords <math>QP</math> and <math>PR</math> have equal length. (<math>P</math> is the midpoint of <math>QR</math>) Find the square of the length of <math>QP</math>. | ||
− | [ | + | |
− | + | [[Image:1983problem14.JPG]] | |
== Solution == | == Solution == |
Revision as of 21:40, 23 December 2006
Problem
In the adjoining figure, two circles with radii and are drawn with their centers units apart. At , one of the points of intersection, a line is drawn in sich a way that the chords and have equal length. ( is the midpoint of ) Find the square of the length of .
Solution
First, notice that if we reflect over we get . Since we know that is on circle and is on circle , we can reflect circle over to get another circle (centered at a new point with radius ) that intersects circle at . The rest is just finding lengths:
Since is the midpoint of segment , is a median of triangle . Because we know that , , and , we can find the third side of the triangle using stewarts or whatever else you like. We get . So now we have a kite with , , and , and all we need is the length of the other diagonal . The easiest way it can be found is with the Pythagorean Theorem. Let be the length of . Then
.
Doing routine algebra on the above equation, we find that , so