Difference between revisions of "The Apple Method"

(Examples)
(Examples)
Line 6: Line 6:
 
<math>\emph{Solution:}</math>
 
<math>\emph{Solution:}</math>
  
If we set <math>\textcolor{red}{(\textcolor{green}{^{^(}})}=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</math>, we can see that <math>(^{^(})^2= 6+(^{^(})</math>.
+
If we set <math>\textcolor{red}{(\textcolor{green}{^{^(}})}=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</math>, we can see that <math>\textcolor{red}{(\textcolor{green}{^{^(}})}^2= 6+\textcolor{red}{(\textcolor{green}{^{^(}})}</math>.
  
Solving, we get <math>(^{^(})=\boxed{3}</math>
+
Solving, we get <math>\textcolor{red}{(\textcolor{green}{^{^(}})}=\boxed{3}</math>

Revision as of 15:23, 21 March 2020

The Apple Method is a method for solving algebra problems. An apple is used to make a clever algebraic substitution.

Examples

1. Evaluate: \[\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}\]

$\emph{Solution:}$

If we set $\textcolor{red}{(\textcolor{green}{^{^(}})}=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$, we can see that $\textcolor{red}{(\textcolor{green}{^{^(}})}^2= 6+\textcolor{red}{(\textcolor{green}{^{^(}})}$.

Solving, we get $\textcolor{red}{(\textcolor{green}{^{^(}})}=\boxed{3}$