Difference between revisions of "The Apple Method"

m (Examples)
(Examples)
Line 6: Line 6:
 
<math>\emph{Solution:}</math>
 
<math>\emph{Solution:}</math>
  
If we set https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Red_apple.svg/40px-Red_apple.svg.png<math>=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</math>, we can see that https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Red_apple.svg/40px-Red_apple.svg.png<math>^2= 6+</math>https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Red_apple.svg/40px-Red_apple.svg.png.
+
If we set apple<math>=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</math>, we can see that apple<math>^2= 6+</math>apple.
  
 
Solving, we get https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Red_apple.svg/40px-Red_apple.svg.png <math>=\boxed{3}</math>
 
Solving, we get https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Red_apple.svg/40px-Red_apple.svg.png <math>=\boxed{3}</math>

Revision as of 14:41, 21 March 2020

The Apple Method is a method for solving algebra problems. An apple is used to make a clever algebraic substitution.

Examples

1. Evaluate: \[\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}\]

$\emph{Solution:}$

If we set apple$=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$, we can see that apple$^2= 6+$apple.

Solving, we get https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Red_apple.svg/40px-Red_apple.svg.png $=\boxed{3}$