Difference between revisions of "2020 AIME I Problems/Problem 13"
(→Solution) |
|||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
+ | <asy> | ||
+ | /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | ||
+ | import graph; size(18cm); | ||
+ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
+ | pen dotstyle = black; /* point style */ | ||
+ | real xmin = -10.645016481888238, xmax = 5.4445786933235505, ymin = 0.7766255516825293, ymax = 9.897545413994122; /* image dimensions */ | ||
+ | pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882); | ||
+ | |||
+ | draw((-6.837129089839387,8.163360372429347)--(-6.8268938290378,5.895596632024835)--(-4.33118398380513,6.851781504978754)--cycle, linewidth(2) + rvwvcq); | ||
+ | draw((-6.837129089839387,8.163360372429347)--(-8.31920210577661,4.188003838050227)--(-3.319253031309944,4.210570466954303)--cycle, linewidth(2) + rvwvcq); | ||
+ | /* draw figures */ | ||
+ | draw((-6.837129089839387,8.163360372429347)--(-7.3192122908832715,4.192517163831042), linewidth(2) + wrwrwr); | ||
+ | draw((-7.3192122908832715,4.192517163831042)--(-2.319263216416622,4.2150837927351175), linewidth(2) + wrwrwr); | ||
+ | draw((-2.319263216416622,4.2150837927351175)--(-6.837129089839387,8.163360372429347), linewidth(2) + wrwrwr); | ||
+ | draw((xmin, -2.6100704119306224*xmin-9.68202796751058)--(xmax, -2.6100704119306224*xmax-9.68202796751058), linewidth(2) + wrwrwr); /* line */ | ||
+ | draw((xmin, 0.3831314264278095*xmin + 8.511194202815297)--(xmax, 0.3831314264278095*xmax + 8.511194202815297), linewidth(2) + wrwrwr); /* line */ | ||
+ | draw(circle((-6.8268938290378,5.895596632024835), 2.267786838055365), linewidth(2) + wrwrwr); | ||
+ | draw(circle((-4.33118398380513,6.851781504978754), 2.828427124746193), linewidth(2) + wrwrwr); | ||
+ | draw((xmin, 0.004513371749987873*xmin + 4.225551489816879)--(xmax, 0.004513371749987873*xmax + 4.225551489816879), linewidth(2) + wrwrwr); /* line */ | ||
+ | draw((-7.3192122908832715,4.192517163831042)--(-4.33118398380513,6.851781504978754), linewidth(2) + wrwrwr); | ||
+ | draw((-6.8268938290378,5.895596632024835)--(-2.319263216416622,4.2150837927351175), linewidth(2) + wrwrwr); | ||
+ | draw((-6.837129089839387,8.163360372429347)--(-8.31920210577661,4.188003838050227), linewidth(2) + wrwrwr); | ||
+ | draw((xmin, 0.004513371749987873*xmin + 8.19421887771445)--(xmax, 0.004513371749987873*xmax + 8.19421887771445), linewidth(2) + wrwrwr); /* line */ | ||
+ | draw((-3.837159645159393,8.176900349771794)--(-8.31920210577661,4.188003838050227), linewidth(2) + wrwrwr); | ||
+ | draw((-3.837159645159393,8.176900349771794)--(-5.3192326610966125,4.2015438153926725), linewidth(2) + wrwrwr); | ||
+ | draw((-6.837129089839387,8.163360372429347)--(-6.8268938290378,5.895596632024835), linewidth(2) + rvwvcq); | ||
+ | draw((-6.8268938290378,5.895596632024835)--(-4.33118398380513,6.851781504978754), linewidth(2) + rvwvcq); | ||
+ | draw((-4.33118398380513,6.851781504978754)--(-6.837129089839387,8.163360372429347), linewidth(2) + rvwvcq); | ||
+ | draw((-6.837129089839387,8.163360372429347)--(-8.31920210577661,4.188003838050227), linewidth(2) + rvwvcq); | ||
+ | draw((-8.31920210577661,4.188003838050227)--(-3.319253031309944,4.210570466954303), linewidth(2) + rvwvcq); | ||
+ | draw((-3.319253031309944,4.210570466954303)--(-6.837129089839387,8.163360372429347), linewidth(2) + rvwvcq); | ||
+ | /* dots and labels */ | ||
+ | dot((-6.837129089839387,8.163360372429347),dotstyle); | ||
+ | label("$A$", (-6.8002301023571095,8.267690318323321), NE * labelscalefactor); | ||
+ | dot((-7.3192122908832715,4.192517163831042),dotstyle); | ||
+ | label("$B$", (-7.2808283997985,4.29753046989445), NE * labelscalefactor); | ||
+ | dot((-2.319263216416622,4.2150837927351175),linewidth(4pt) + dotstyle); | ||
+ | label("$C$", (-2.276337432963145,4.29753046989445), NE * labelscalefactor); | ||
+ | dot((-5.3192326610966125,4.2015438153926725),linewidth(4pt) + dotstyle); | ||
+ | label("$D$", (-5.274852897434433,4.287082680819637), NE * labelscalefactor); | ||
+ | dot((-6.8268938290378,5.895596632024835),linewidth(4pt) + dotstyle); | ||
+ | label("$F$", (-6.789782313282296,5.979624510939313), NE * labelscalefactor); | ||
+ | dot((-4.33118398380513,6.851781504978754),linewidth(4pt) + dotstyle); | ||
+ | label("$E$", (-4.292760724402025,6.93037331674728), NE * labelscalefactor); | ||
+ | dot((-8.31920210577661,4.188003838050227),linewidth(4pt) + dotstyle); | ||
+ | label("$G$", (-8.273368361905721,4.276634891744824), NE * labelscalefactor); | ||
+ | dot((-3.319253031309944,4.210570466954303),linewidth(4pt) + dotstyle); | ||
+ | label("$H$", (-3.2793251841451787,4.29753046989445), NE * labelscalefactor); | ||
+ | dot((-3.837159645159393,8.176900349771794),linewidth(4pt) + dotstyle); | ||
+ | label("$I$", (-3.7912668488110084,8.257242529248508), NE * labelscalefactor); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | /* end of picture */ | ||
+ | </asy> | ||
+ | Points are defined as shown. It is pretty easy to show that <math>\triangle AFE \sim \triangle AGH</math> by spiral similarity at <math>A</math> by some short angle chasing. Now, note that <math>AD</math> is the altitude of <math>\triangle AFE</math>, as the altitude of <math>AGH</math>. We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that <math>AD/2 = \frac{\sqrt{18}}{2}</math>, the altitude of <math>\triangle AFE</math>. Similarly, the altitude of <math>\triangle AGH</math> is the altitude of <math>\triangle ABC</math>, or <math>\frac{12}{\sqrt{7}}</math>. However, it's not too hard to see that <math>GB = HC = 1</math>, and therefore <math>[AGH] = [ABC]</math>. From here, we get that the area of <math>\triangle ABC</math> is <math>\frac{15\sqrt{7}}{14} \implies \boxed{036}</math>, by similarity. ~awang11 | ||
==See Also== | ==See Also== |
Revision as of 16:26, 12 March 2020
Note: Please do not post problems here until after the AIME.
Problem
Solution
Points are defined as shown. It is pretty easy to show that by spiral similarity at by some short angle chasing. Now, note that is the altitude of , as the altitude of . We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that , the altitude of . Similarly, the altitude of is the altitude of , or . However, it's not too hard to see that , and therefore . From here, we get that the area of is , by similarity. ~awang11
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.