Difference between revisions of "2020 AIME I Problems/Problem 15"
(→Solution) |
|||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
+ | The following is a simple power of a point solution to this menace of a problem: | ||
+ | [asy] | ||
+ | /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | ||
+ | import graph; size(18cm); | ||
+ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
+ | pen dotstyle = black; /* point style */ | ||
+ | real xmin = -12.821705655137235, xmax = 10.870448356581754, ymin = -3.0673360097491003, ymax = 10.363346102088961; /* image dimensions */ | ||
+ | pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); | ||
+ | /* draw figures */ | ||
+ | draw((xmin, 0.0052470390246834855*xmin + 3.437118410441658)--(xmax, 0.0052470390246834855*xmax + 3.437118410441658), linewidth(2) + wrwrwr); /* line */ | ||
+ | draw(circle((-4.538171990791266,4.905585481447388), 4.693275552848494), linewidth(2) + wrwrwr); | ||
+ | draw(circle((-4.522512329243054,1.9211095752183682), 4.693275552848494), linewidth(2) + wrwrwr); | ||
+ | draw((xmin, -190.58367877496823*xmin-1479.5139994609244)--(xmax, -190.58367877496823*xmax-1479.5139994609244), linewidth(2) + wrwrwr); /* line */ | ||
+ | draw((xmin, 0.9703333412757664*xmin + 12.849035992754926)--(xmax, 0.9703333412757664*xmax + 12.849035992754926), linewidth(2) + wrwrwr); /* line */ | ||
+ | draw(circle((-7.790821079477277,5.289342543424063), 1.8930768158550504), linewidth(2) + wrwrwr); | ||
+ | draw((xmin, -1.0305736775830343*xmin-5.438100054565965)--(xmax, -1.0305736775830343*xmax-5.438100054565965), linewidth(2) + wrwrwr); /* line */ | ||
+ | draw((xmin, -1.0305736775830343*xmin + 0.22866488339331612)--(xmax, -1.0305736775830343*xmax + 0.22866488339331612), linewidth(2) + wrwrwr); /* line */ | ||
+ | /* dots and labels */ | ||
+ | dot((-8.98,3.39),dotstyle); | ||
+ | label("<math>B</math>", (-8.914038694762803,3.548005694821766), NE * labelscalefactor); | ||
+ | dot((-0.08068432003432058,3.4366950566657577),dotstyle); | ||
+ | label("<math>C</math>", (-0.021788682572170717,3.594159241597842), NE * labelscalefactor); | ||
+ | dot((-4.538171990791266,4.905585481447388),dotstyle); | ||
+ | label("<math>O</math>", (-4.483298204259513,5.055688222840243), NE * labelscalefactor); | ||
+ | dot((-4.522512329243054,1.9211095752183682),linewidth(4pt) + dotstyle); | ||
+ | label("<math>O'</math>", (-4.467913688667488,2.0403231668032897), NE * labelscalefactor); | ||
+ | dot((-7.790821079477277,5.289342543424063),dotstyle); | ||
+ | label("<math>H</math>", (-7.729430994176854,5.440301112640874), NE * labelscalefactor); | ||
+ | dot((-7.806480741025488,8.273818449653083),linewidth(4pt) + dotstyle); | ||
+ | label("<math>A</math>", (-7.7448155097688804,8.394128106309726), NE * labelscalefactor); | ||
+ | dot((-9.139423209055858,3.980748932978468),linewidth(4pt) + dotstyle); | ||
+ | label("<math>X</math>", (-9.083268366275083,4.101848256134676), NE * labelscalefactor); | ||
+ | dot((-9.752410287411378,3.3859471330788855),linewidth(4pt) + dotstyle); | ||
+ | label("<math>K</math>", (-9.68326447436407,3.5018521480456903), NE * labelscalefactor); | ||
+ | dot((-3.475227037470366,9.476907329794422),linewidth(4pt) + dotstyle); | ||
+ | label("<math>Y</math>", (-3.4063821128177407,9.594120322487697), NE * labelscalefactor); | ||
+ | dot((-7.780888168280388,3.3962917865759925),linewidth(4pt) + dotstyle); | ||
+ | label("<math>L</math>", (-7.714046478584829,3.5172366636377155), NE * labelscalefactor); | ||
+ | dot((-7.776585346090923,2.5762441045932913),linewidth(4pt) + dotstyle); | ||
+ | label("<math>D</math>", (-7.714046478584829,2.7018573372603765), NE * labelscalefactor); | ||
+ | dot((-6.307325123263112,6.728828131386446),linewidth(4pt) + dotstyle); | ||
+ | label("<math>E</math>", (-6.252517497342424,6.855676547107199), NE * labelscalefactor); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | /* end of picture */ | ||
+ | [/asy] | ||
+ | |||
+ | Let points be what they appear as in the diagram below. Note that <math>3HX = HY</math> is not insignificant; from here, we set <math>XH = HE = \frac{1}{2} EY = HL = 2</math> by PoP and trivial construction. Now, <math>D</math> is the reflection of <math>A</math> over <math>H</math>. Note <math>AO \perp XY</math>, and therefore by Pythagorean theorem we have <math>AE = XD = \sqrt{5}</math>. Consider <math>HD = 3</math>. We have that <math>\triangle HXD \cong HLK</math>, and therefore we are ready to PoP with respect to <math>(BHC)</math>. Setting <math>BL = x, LC = y</math>, we obtain <math>xy = 10</math> by PoP on <math>(ABC)</math>, and furthermore, we have <math>KH^2 = 9 = (KL - x)(KL + y) = (\sqrt{5} - x)(\sqrt{5} + y)</math>. Now, we get <math>4 = \sqrt{5}(y - x) - xy</math>, and from <math>xy = 10</math> we take <cmath>\frac{14}{\sqrt{5}} = y - x.</cmath> However, squaring and manipulating with <math>xy = 10</math> yields that <math>(x + y)^2 = \frac{396}{5}</math> and from here, since <math>AL = 5</math> we get the area to be <math>3\sqrt{55} \implies \boxed{058}</math>. ~awang11's sol | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2020|n=I|num-b=14|after=Last Problem}} | {{AIME box|year=2020|n=I|num-b=14|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 16:14, 12 March 2020
Note: Please do not post problems here until after the AIME.
Problem
Solution
The following is a simple power of a point solution to this menace of a problem: [asy]
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(18cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -12.821705655137235, xmax = 10.870448356581754, ymin = -3.0673360097491003, ymax = 10.363346102088961; /* image dimensions */ pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451);
/* draw figures */
draw((xmin, 0.0052470390246834855*xmin + 3.437118410441658)--(xmax, 0.0052470390246834855*xmax + 3.437118410441658), linewidth(2) + wrwrwr); /* line */ draw(circle((-4.538171990791266,4.905585481447388), 4.693275552848494), linewidth(2) + wrwrwr); draw(circle((-4.522512329243054,1.9211095752183682), 4.693275552848494), linewidth(2) + wrwrwr); draw((xmin, -190.58367877496823*xmin-1479.5139994609244)--(xmax, -190.58367877496823*xmax-1479.5139994609244), linewidth(2) + wrwrwr); /* line */ draw((xmin, 0.9703333412757664*xmin + 12.849035992754926)--(xmax, 0.9703333412757664*xmax + 12.849035992754926), linewidth(2) + wrwrwr); /* line */ draw(circle((-7.790821079477277,5.289342543424063), 1.8930768158550504), linewidth(2) + wrwrwr); draw((xmin, -1.0305736775830343*xmin-5.438100054565965)--(xmax, -1.0305736775830343*xmax-5.438100054565965), linewidth(2) + wrwrwr); /* line */ draw((xmin, -1.0305736775830343*xmin + 0.22866488339331612)--(xmax, -1.0305736775830343*xmax + 0.22866488339331612), linewidth(2) + wrwrwr); /* line */
/* dots and labels */
dot((-8.98,3.39),dotstyle); label("", (-8.914038694762803,3.548005694821766), NE * labelscalefactor); dot((-0.08068432003432058,3.4366950566657577),dotstyle); label("", (-0.021788682572170717,3.594159241597842), NE * labelscalefactor); dot((-4.538171990791266,4.905585481447388),dotstyle); label("", (-4.483298204259513,5.055688222840243), NE * labelscalefactor); dot((-4.522512329243054,1.9211095752183682),linewidth(4pt) + dotstyle); label("", (-4.467913688667488,2.0403231668032897), NE * labelscalefactor); dot((-7.790821079477277,5.289342543424063),dotstyle); label("", (-7.729430994176854,5.440301112640874), NE * labelscalefactor); dot((-7.806480741025488,8.273818449653083),linewidth(4pt) + dotstyle); label("", (-7.7448155097688804,8.394128106309726), NE * labelscalefactor); dot((-9.139423209055858,3.980748932978468),linewidth(4pt) + dotstyle); label("", (-9.083268366275083,4.101848256134676), NE * labelscalefactor); dot((-9.752410287411378,3.3859471330788855),linewidth(4pt) + dotstyle); label("", (-9.68326447436407,3.5018521480456903), NE * labelscalefactor); dot((-3.475227037470366,9.476907329794422),linewidth(4pt) + dotstyle); label("", (-3.4063821128177407,9.594120322487697), NE * labelscalefactor); dot((-7.780888168280388,3.3962917865759925),linewidth(4pt) + dotstyle); label("", (-7.714046478584829,3.5172366636377155), NE * labelscalefactor); dot((-7.776585346090923,2.5762441045932913),linewidth(4pt) + dotstyle); label("", (-7.714046478584829,2.7018573372603765), NE * labelscalefactor); dot((-6.307325123263112,6.728828131386446),linewidth(4pt) + dotstyle); label("", (-6.252517497342424,6.855676547107199), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */
[/asy]
Let points be what they appear as in the diagram below. Note that is not insignificant; from here, we set by PoP and trivial construction. Now, is the reflection of over . Note , and therefore by Pythagorean theorem we have . Consider . We have that , and therefore we are ready to PoP with respect to . Setting , we obtain by PoP on , and furthermore, we have . Now, we get , and from we take However, squaring and manipulating with yields that and from here, since we get the area to be . ~awang11's sol
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.