Difference between revisions of "2012 AIME II Problems/Problem 12"
(→Problem 12) |
Firebolt360 (talk | contribs) (→Problem 12) |
||
Line 1: | Line 1: | ||
== Problem 12 == | == Problem 12 == | ||
− | For a positive integer <math>p</math>, define the positive integer <math>n</math> to be <math>p</math>''-safe'' if <math>n</math> differs in absolute value by more than <math>2</math> from all multiples of <math>p</math>. For example, the set of <math>10</math>-safe numbers is <math>\{ 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 23, \ldots\}</math>. Find the number of positive integers less than or equal to <math>10,000</math> which are simultaneously <math>7</math>-safe, <math>11</math>-safe, and <math> | + | For a positive integer <math>p</math>, define the positive integer <math>n</math> to be <math>p</math>''-safe'' if <math>n</math> differs in absolute value by more than <math>2</math> from all multiples of <math>p</math>. For example, the set of <math>10</math>-safe numbers is <math>\{ 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 23, \ldots\}</math>. Find the number of positive integers less than or equal to <math>10,000</math> which are simultaneously <math>7</math>-safe, <math>11</math>-safe, and <math>13</math>-safe. |
== Solution == | == Solution == |
Revision as of 14:12, 8 March 2020
Problem 12
For a positive integer , define the positive integer
to be
-safe if
differs in absolute value by more than
from all multiples of
. For example, the set of
-safe numbers is
. Find the number of positive integers less than or equal to
which are simultaneously
-safe,
-safe, and
-safe.
Solution
We see that a number is
-safe if and only if the residue of
is greater than
and less than
; thus, there are
residues
that a
-safe number can have. Therefore, a number
satisfying the conditions of the problem can have
different residues
,
different residues
, and
different residues
. The Chinese Remainder Theorem states that for a number
that is
(mod b)
(mod d)
(mod f)
has one solution if
. For example, in our case, the number
can be:
3 (mod 7)
3 (mod 11)
7 (mod 13)
so since
=1, there is 1 solution for n for this case of residues of
.
This means that by the Chinese Remainder Theorem, can have
different residues mod
. Thus, there are
values of
satisfying the conditions in the range
. However, we must now remove any values greater than
that satisfy the conditions. By checking residues, we easily see that the only such values are
and
, so there remain
values satisfying the conditions of the problem.
See Also
2012 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.