Difference between revisions of "2011 AIME II Problems/Problem 4"
m (→Solution 1) |
(→Solutions) |
||
Line 27: | Line 27: | ||
=== Solution 5 === | === Solution 5 === | ||
Let <math>DC=x</math>. Then by the Angle Bisector Theorem, <math>BD=\frac{20}{11}x</math>. By the Ratio Lemma, we have that <math>\frac{PC}{AP}=\frac{\frac{31}{11}x\sin\angle PBC}{20\sin\angle ABP}.</math> Notice that <math>[\triangle BAM]=[\triangle BMD]</math> since their bases have the same length and they share a height. By the sin area formula, we have that <cmath>\frac{1}{2}\cdot20\cdot BM\cdot \sin\angle ABP=\frac{1}{2}\cdot \frac{20}{11}x\cdot BM\cdot\sin\angle PBC.</cmath> Simplifying, we get that <math>\frac{\sin\angle PBC}{\sin\angle ABP}=\frac{11}{x}.</math> Plugging this into what we got from the Ratio Lemma, we have that <math>\frac{PC}{AP}=\frac{31}{20}\implies\boxed{051.}</math> | Let <math>DC=x</math>. Then by the Angle Bisector Theorem, <math>BD=\frac{20}{11}x</math>. By the Ratio Lemma, we have that <math>\frac{PC}{AP}=\frac{\frac{31}{11}x\sin\angle PBC}{20\sin\angle ABP}.</math> Notice that <math>[\triangle BAM]=[\triangle BMD]</math> since their bases have the same length and they share a height. By the sin area formula, we have that <cmath>\frac{1}{2}\cdot20\cdot BM\cdot \sin\angle ABP=\frac{1}{2}\cdot \frac{20}{11}x\cdot BM\cdot\sin\angle PBC.</cmath> Simplifying, we get that <math>\frac{\sin\angle PBC}{\sin\angle ABP}=\frac{11}{x}.</math> Plugging this into what we got from the Ratio Lemma, we have that <math>\frac{PC}{AP}=\frac{31}{20}\implies\boxed{051.}</math> | ||
+ | |||
+ | === Solution 5 (quick Menelaus) === | ||
+ | First, we will find <math>\frac{MP}{BP}</math>. By Menelaus on <math>\triangle BDM</math> and the line <math>AC</math>, we have | ||
+ | <cmath>\frac{BC}{CD}\cdot\frac{DA}{AM}\cdot\frac{MP}{PB}=1\implies \frac{62MP}{11BP}=1\implies \frac{MP}{BP}=\frac{11}{62}.</cmath> | ||
+ | This implies that <math>\frac{MB}{BP}=1-\frac{MP}{BP}=\frac{51}{62}</math>. Then, by Menelaus on <math>\triangle AMP</math> and line <math>BC</math>, we have | ||
+ | <cmath>\frac{AD}{DM}\cdot\frac{MB}{BP}\cdot\frac{PC}{CA}=1\implies \frac{PC}{CA}=\frac{31}{51}.</cmath> | ||
+ | Therefore, <math>\frac{PC}{AP}=\frac{31}{51-31}=\frac{31}{20}.</math> The answer is <math>\boxed{051}</math>. -brainiacmaniac31 | ||
== See also == | == See also == |
Revision as of 21:04, 4 March 2020
Problem 4
In triangle ,
. The angle bisector of
intersects
at point
, and point
is the midpoint of
. Let
be the point of the intersection of
and
. The ratio of
to
can be expressed in the form
, where
and
are relatively prime positive integers. Find
.
Contents
Solutions
Solution 1
Let
be on
such that
. It follows that
, so
by the Angle Bisector Theorem. Similarly, we see by the midline theorem that
. Thus,
and
.
Solution 2
Assign mass points as follows: by Angle-Bisector Theorem, , so we assign
. Since
, then
, and
, so
.
Solution 3
By Menelaus' Theorem on with transversal
,
So
.
Solution 4
We will use barycentric coordinates. Let ,
,
. By the Angle Bisector Theorem,
. Since
is the midpoint of
,
. Therefore, the equation for line BM is
. Let
. Using the equation for
, we get
Therefore,
so the answer is
.
Solution 5
Let . Then by the Angle Bisector Theorem,
. By the Ratio Lemma, we have that
Notice that
since their bases have the same length and they share a height. By the sin area formula, we have that
Simplifying, we get that
Plugging this into what we got from the Ratio Lemma, we have that
Solution 5 (quick Menelaus)
First, we will find . By Menelaus on
and the line
, we have
This implies that
. Then, by Menelaus on
and line
, we have
Therefore,
The answer is
. -brainiacmaniac31
See also
2011 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.