Difference between revisions of "2020 AMC 10A Problems/Problem 20"
Math-amaze (talk | contribs) (→Solution 4 (Trigonometry)) |
User478392 (talk | contribs) (AoPS moderator team forbids any guessing strategies.) |
||
Line 36: | Line 36: | ||
~ Diagram by ciceronii | ~ Diagram by ciceronii | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solution 3 (coordinates)== | ==Solution 3 (coordinates)== |
Revision as of 18:32, 1 March 2020
- The following problem is from both the 2020 AMC 12A #18 and 2020 AMC 10A #20, so both problems redirect to this page.
Contents
Problem
Quadrilateral satisfies and Diagonals and intersect at point and What is the area of quadrilateral
Solution 1 (Just Drop An Altitude)
It's crucial to draw a good diagram for this one. Since and , we get . Now we need to find to get the area of the whole quadrilateral. Drop an altitude from to and call the point of intersection . Let . Since , then . By dropping this altitude, we can also see two similar triangles, and . Since is , and , we get that . Now, if we redraw another diagram just of , we get that . Now expanding, simplifying, and dividing by the GCF, we get . This factors to . Since lengths cannot be negative, . Since , . So
(I'm very sorry if you're a visual learner but now you have a diagram by ciceronii)
~ Solution by Ultraman
~ Diagram by ciceronii
Solution 3 (coordinates)
Let the points be , , , ,and , respectively. Since lies on line , we know that . Furthermore, since , lies on the circle with diameter , so . Solving for and with these equations, we get the solutions and . We immediately discard the solution as should be negative. Thus, we conclude that .
Solution 4 (Trigonometry)
Let and Using Law of Sines on we get and LoS on yields Divide the two to get Now, and solve the quadratic, taking the positive solution (C is acute) to get So if then and By Pythagorean Theorem, and the answer is
(This solution is incomplete, can someone complete it please-Lingjun) ok Latex edited by kc5170
We could use the famous m-n rule in trigonometry in triangle ABC with Point E [Unable to write it here.Could anybody write the expression] We will find that BD is angle bisector of triangle ABC(because we will get tan (x)=1) Therefore by converse of angle bisector theorem AB:BC = 1:3. By using phythagorean theorem we have values of AB and AC. AB.AC = 120. Adding area of ABC and ACD Answer••360
Video Solution
On The Spot STEM https://www.youtube.com/watch?v=hIdNde2Vln4
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2020 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.