Difference between revisions of "1987 AHSME Problems"

m (Problem 11)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
{{AHSME Problems
 +
|year = 1987
 +
}}
 
==Problem 1==
 
==Problem 1==
  
Line 88: Line 91:
 
label("C", (2,7), W);
 
label("C", (2,7), W);
 
label("D", (4,3), N);
 
label("D", (4,3), N);
label("x", (2.25,6));
+
label("$x$", (2.25,6));
label("y", (1.5,2), SW);
+
label("$y$", (1.5,2), SW);
 
label("$z$", (7.88,1.5));
 
label("$z$", (7.88,1.5));
label("w", (4,2.85), S);
+
label("$w$", (4,2.85), S);
 
</asy>
 
</asy>
  
Line 231: Line 234:
 
   
 
   
 
If <math>(x, y)</math> is a solution to the system
 
If <math>(x, y)</math> is a solution to the system
<math>xy=6 \qquad \text{and} \qquad x^2y+xy^2+x+y=63</math>,
+
<math>xy=6</math> and <math>x^2y+xy^2+x+y=63</math>,
 
find <math>x^2+y^2</math>.
 
find <math>x^2+y^2</math>.
  

Latest revision as of 12:45, 19 February 2020

1987 AHSME (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 30-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 5 points for each correct answer, 2 points for each problem left unanswered, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers.
  4. Figures are not necessarily drawn to scale.
  5. You will have 90 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Problem 1

$(1+x^2)(1-x^3)$ equals

$\text{(A)}\ 1 - x^5\qquad \text{(B)}\ 1 - x^6\qquad \text{(C)}\ 1+ x^2 -x^3\qquad \\  \text{(D)}\ 1+x^2-x^3-x^5\qquad \text{(E)}\ 1+x^2-x^3-x^6$

Solution

Problem 2

A triangular corner with side lengths $DB=EB=1$ is cut from equilateral triangle ABC of side length $3$. The perimeter of the remaining quadrilateral is

[asy] draw((0,0)--(2,0)--(2.5,.87)--(1.5,2.6)--cycle, linewidth(1)); draw((2,0)--(3,0)--(2.5,.87)); label("3", (0.75,1.3), NW); label("1", (2.5, 0), S); label("1", (2.75,.44), NE); label("A", (1.5,2.6), N); label("B", (3,0), S); label("C", (0,0), W); label("D", (2.5,.87), NE); label("E", (2,0), S); [/asy]

$\text{(A)} \ 6 \qquad  \text{(B)} \ 6\frac{1}{2} \qquad  \text{(C)} \ 7 \qquad  \text{(D)} \ 7\frac{1}{2} \qquad  \text{(E)} \ 8$

Solution

Problem 3

How many primes less than $100$ have $7$ as the ones digit? (Assume the usual base ten representation)

$\text{(A)} \ 4 \qquad  \text{(B)} \ 5 \qquad  \text{(C)} \ 6 \qquad  \text{(D)} \ 7 \qquad  \text{(E)} \ 8$

Solution

Problem 4

$\frac{2^1+2^0+2^{-1}}{2^{-2}+2^{-3}+2^{-4}}$ equals

$\text{(A)} \ 6 \qquad  \text{(B)} \ 8 \qquad  \text{(C)} \ \frac{31}{2} \qquad  \text{(D)} \ 24 \qquad  \text{(E)} \ 512$

Solution

Problem 5

A student recorded the exact percentage frequency distribution for a set of measurements, as shown below. However, the student neglected to indicate $N$, the total number of measurements. What is the smallest possible value of $N$?

\[\begin{tabular}{c c}\text{measured value}&\text{percent frequency}\\ \hline 0 & 12.5\\ 1 & 0\\ 2 & 50\\ 3 & 25\\ 4 & 12.5\\ \hline\ & 100\\ \end{tabular}\]

$\textbf{(A)}\ 5 \qquad \textbf{(B)}\ 8 \qquad \textbf{(C)}\ 16 \qquad \textbf{(D)}\ 25 \qquad \textbf{(E)}\ 50$

Solution

Problem 6

In the $\triangle ABC$ shown, $D$ is some interior point, and $x, y, z, w$ are the measures of angles in degrees. Solve for $x$ in terms of $y, z$ and $w$.

[asy] draw((0,0)--(10,0)--(2,7)--cycle); draw((0,0)--(4,3)--(10,0)); label("A", (0,0), SW); label("B", (10,0), SE); label("C", (2,7), W); label("D", (4,3), N); label("$x$", (2.25,6)); label("$y$", (1.5,2), SW); label("$z$", (7.88,1.5)); label("$w$", (4,2.85), S); [/asy]

$\textbf{(A)}\ w-y-z \qquad \textbf{(B)}\ w-2y-2z \qquad \textbf{(C)}\ 180-w-y-z \qquad \\ \textbf{(D)}\ 2w-y-z\qquad \textbf{(E)}\ 180-w+y+z$

Solution

Problem 7

If $a-1=b+2=c-3=d+4$, which of the four quantities $a,b,c,d$ is the largest?

$\textbf{(A)}\ a \qquad \textbf{(B)}\ b \qquad \textbf{(C)}\ c \qquad \textbf{(D)}\ d \qquad \textbf{(E)}\ \text{no one is always largest}$

Solution

Problem 8

In the figure the sum of the distances $AD$ and $BD$ is

[asy] draw((0,0)--(13,0)--(13,4)--(10,4)); draw((12.5,0)--(12.5,.5)--(13,.5)); draw((13,3.5)--(12.5,3.5)--(12.5,4)); label("A", (0,0), S); label("B", (13,0), SE); label("C", (13,4), NE); label("D", (10,4), N); label("13", (6.5,0), S); label("4", (13,2), E); label("3", (11.5,4), N); [/asy]

$\textbf{(A)}\ \text{between 10 and 11} \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ \text{between 15 and 16}\qquad\\ \textbf{(D)}\ \text{between 16 and 17}\qquad \textbf{(E)}\ 17$

Solution

Problem 9

The first four terms of an arithmetic sequence are $a, x, b, 2x$. The ratio of $a$ to $b$ is

$\textbf{(A)}\ \frac{1}{4} \qquad \textbf{(B)}\ \frac{1}{3} \qquad \textbf{(C)}\ \frac{1}{2} \qquad \textbf{(D)}\ \frac{2}{3}\qquad \textbf{(E)}\ 2$

Solution

Problem 10

How many ordered triples $(a, b, c)$ of non-zero real numbers have the property that each number is the product of the other two?

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$

Solution

Problem 11

Let $c$ be a constant. The simultaneous equations \begin{align*}x-y = &\ 2 \\cx+y = &\ 3 \\\end{align*} have a solution $(x, y)$ inside Quadrant I if and only if

$\textbf{(A)}\ c=-1 \qquad \textbf{(B)}\ c>-1 \qquad \textbf{(C)}\ c<\frac{3}{2} \qquad \textbf{(D)}\ 0<c<\frac{3}{2}\\ \qquad \textbf{(E)}\ -1<c<\frac{3}{2}$

Solution

Problem 12

In an office, at various times during the day the boss gives the secretary a letter to type, each time putting the letter on top of the pile in the secretary's in-box. When there is time, the secretary takes the top letter off the pile and types it. If there are five letters in all, and the boss delivers them in the order $1\ 2\ 3\ 4\ 5$, which of the following could not be the order in which the secretary types them?

$\textbf{(A)}\ 1\ 2\ 3\ 4\ 5 \qquad \textbf{(B)}\ 2\ 4\ 3\ 5\ 1 \qquad \textbf{(C)}\ 3\ 2\ 4\ 1\ 5 \qquad \textbf{(D)}\ 4\ 5\ 2\ 3\ 1 \qquad \textbf{(E)}\ 5\ 4\ 3\ 2\ 1 \qquad$

Solution

Problem 13

A long piece of paper $5$ cm wide is made into a roll for cash registers by wrapping it $600$ times around a cardboard tube of diameter $2$ cm, forming a roll $10$ cm in diameter. Approximate the length of the paper in meters. (Pretend the paper forms $600$ concentric circles with diameters evenly spaced from $2$ cm to $10$ cm.)

$\textbf{(A)}\ 36\pi \qquad \textbf{(B)}\ 45\pi \qquad \textbf{(C)}\ 60\pi \qquad \textbf{(D)}\ 72\pi \qquad \textbf{(E)}\ 90\pi$

Solution

Problem 14

$ABCD$ is a square and $M$ and $N$ are the midpoints of $BC$ and $CD$ respectively. Then $\sin \theta=$

[asy] draw((0,0)--(2,0)--(2,2)--(0,2)--cycle); draw((0,0)--(2,1)); draw((0,0)--(1,2)); label("A", (0,0), SW); label("B", (0,2), NW); label("C", (2,2), NE); label("D", (2,0), SE); label("M", (1,2), N); label("N", (2,1), E); label("$\theta$", (.5,.5), SW); [/asy]

$\textbf{(A)}\ \frac{\sqrt{5}}{5} \qquad \textbf{(B)}\ \frac{3}{5} \qquad \textbf{(C)}\ \frac{\sqrt{10}}{5} \qquad \textbf{(D)}\ \frac{4}{5}\qquad \textbf{(E)}\ \text{none of these}$

Solution

Problem 15

If $(x, y)$ is a solution to the system $xy=6$ and $x^2y+xy^2+x+y=63$, find $x^2+y^2$.

$\textbf{(A)}\ 13 \qquad \textbf{(B)}\ \frac{1173}{32} \qquad \textbf{(C)}\ 55 \qquad \textbf{(D)}\ 69 \qquad \textbf{(E)}\ 81$

Solution

Problem 16

A cryptographer devises the following method for encoding positive integers. First, the integer is expressed in base $5$. Second, a 1-to-1 correspondence is established between the digits that appear in the expressions in base $5$ and the elements of the set $\{V, W, X, Y, Z\}$. Using this correspondence, the cryptographer finds that three consecutive integers in increasing order are coded as $VYZ, VYX, VVW$, respectively. What is the base-$10$ expression for the integer coded as $XYZ$?

$\textbf{(A)}\ 48 \qquad \textbf{(B)}\ 71 \qquad \textbf{(C)}\ 82 \qquad \textbf{(D)}\ 108 \qquad \textbf{(E)}\ 113$

Solution

Problem 17

In a mathematics competition, the sum of the scores of Bill and Dick equalled the sum of the scores of Ann and Carol. If the scores of Bill and Carol had been interchanged, then the sum of the scores of Ann and Carol would have exceeded the sum of the scores of the other two. Also, Dick's score exceeded the sum of the scores of Bill and Carol. Determine the order in which the four contestants finished, from highest to lowest. Assume all scores were nonnegative.

$\textbf{(A)}\ \text{Dick, Ann, Carol, Bill} \qquad \textbf{(B)}\ \text{Dick, Ann, Bill, Carol} \qquad \textbf{(C)}\ \text{Dick, Carol, Bill, Ann}\\ \qquad \textbf{(D)}\ \text{Ann, Dick, Carol, Bill}\qquad \textbf{(E)}\ \text{Ann, Dick, Bill, Carol}$

Solution

Problem 18

It takes $A$ algebra books (all the same thickness) and $H$ geometry books (all the same thickness, which is greater than that of an algebra book) to completely fill a certain shelf. Also, $S$ of the algebra books and $M$ of the geometry books would fill the same shelf. Finally, $E$ of the algebra books alone would fill this shelf. Given that $A, H, S, M, E$ are distinct positive integers, it follows that $E$ is

$\textbf{(A)}\ \frac{AM+SH}{M+H} \qquad \textbf{(B)}\ \frac{AM^2+SH^2}{M^2+H^2} \qquad \textbf{(C)}\ \frac{AH-SM}{M-H}\qquad \textbf{(D)}\ \frac{AM-SH}{M-H}\qquad \textbf{(E)}\ \frac{AM^2-SH^2}{M^2-H^2}$

Solution

Problem 19

Which of the following is closest to $\sqrt{65}-\sqrt{63}$?

$\textbf{(A)}\ .12 \qquad \textbf{(B)}\ .13 \qquad \textbf{(C)}\ .14 \qquad \textbf{(D)}\ .15 \qquad \textbf{(E)}\ .16$

Solution

Problem 20

Evaluate $\log_{10}(\tan 1^{\circ})+\log_{10}(\tan 2^{\circ})+\log_{10}(\tan 3^{\circ})+\cdots+\log_{10}(\tan 88^{\circ})+\log_{10}(\tan 89^{\circ}).$

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ \frac{1}{2}\log_{10}(\frac{\sqrt{3}}{2}) \qquad \textbf{(C)}\ \frac{1}{2}\log_{10}2\qquad \textbf{(D)}\ 1\qquad \textbf{(E)}\ \text{none of these}$

Solution

Problem 21

There are two natural ways to inscribe a square in a given isosceles right triangle. If it is done as in Figure 1 below, then one finds that the area of the square is $441 \text{cm}^2$. What is the area (in $\text{cm}^2$) of the square inscribed in the same $\triangle ABC$ as shown in Figure 2 below?

[asy] draw((0,0)--(10,0)--(0,10)--cycle); draw((-25,0)--(-15,0)--(-25,10)--cycle); draw((-20,0)--(-20,5)--(-25,5)); draw((6.5,3.25)--(3.25,0)--(0,3.25)--(3.25,6.5)); label("A", (-25,10), W); label("B", (-25,0), W); label("C", (-15,0), E); label("Figure 1", (-20, -5)); label("Figure 2", (5, -5)); label("A", (0,10), W); label("B", (0,0), W); label("C", (10,0), E); [/asy]

$\textbf{(A)}\ 378 \qquad \textbf{(B)}\ 392 \qquad \textbf{(C)}\ 400 \qquad \textbf{(D)}\ 441 \qquad \textbf{(E)}\ 484$

Solution

Problem 22

A ball was floating in a lake when the lake froze. The ball was removed (without breaking the ice), leaving a hole $24$ cm across as the top and $8$ cm deep. What was the radius of the ball (in centimeters)?

$\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 13 \qquad \textbf{(D)}\ 8\sqrt{3} \qquad \textbf{(E)}\ 6\sqrt{6}$

Solution

Problem 23

If $p$ is a prime and both roots of $x^2+px-444p=0$ are integers, then

$\textbf{(A)}\ 1<p\le 11 \qquad \textbf{(B)}\ 11<p \le 21 \qquad \textbf{(C)}\ 21< p \le 31 \\ \qquad \textbf{(D)}\ 31< p\le 41\qquad \textbf{(E)}\ 41< p\le 51$

Solution

Problem 24

How many polynomial functions $f$ of degree $\ge 1$ satisfy $f(x^2)=[f(x)]^2=f(f(x))$  ?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ \text{finitely many but more than 2}\\ \qquad \textbf{(E)}\ \infty$

Solution

Problem 25

$ABC$ is a triangle: $A=(0,0), B=(36,15)$ and both the coordinates of $C$ are integers. What is the minimum area $\triangle ABC$ can have?

$\textbf{(A)}\ \frac{1}{2} \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ \frac{3}{2} \qquad \textbf{(D)}\ \frac{13}{2}\qquad \textbf{(E)}\ \text{there is no minimum}$

Solution

Problem 26

The amount $2.5$ is split into two nonnegative real numbers uniformly at random, for instance, into $2.143$ and $.357$, or into $\sqrt{3}$ and $2.5-\sqrt{3}$. Then each number is rounded to its nearest integer, for instance, $2$ and $0$ in the first case above, $2$ and $1$ in the second. What is the probability that the two integers sum to $3$?

$\textbf{(A)}\ \frac{1}{4} \qquad \textbf{(B)}\ \frac{2}{5} \qquad \textbf{(C)}\ \frac{1}{2} \qquad \textbf{(D)}\ \frac{3}{5}\qquad \textbf{(E)}\ \frac{3}{4}$

Solution

Problem 27

A cube of cheese $C=\{(x, y, z)| 0 \le x, y, z \le 1\}$ is cut along the planes $x=y, y=z$ and $z=x$. How many pieces are there? (No cheese is moved until all three cuts are made.)

$\textbf{(A)}\ 5 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 9$

Solution

Problem 28

Let $a, b, c, d$ be real numbers. Suppose that all the roots of $z^4+az^3+bz^2+cz+d=0$ are complex numbers lying on a circle in the complex plane centered at $0+0i$ and having radius $1$. The sum of the reciprocals of the roots is necessarily

$\textbf{(A)}\ a \qquad \textbf{(B)}\ b \qquad \textbf{(C)}\ c \qquad \textbf{(D)}\ -a \qquad \textbf{(E)}\ -b$

Solution

Problem 29

Consider the sequence of numbers defined recursively by $t_1=1$ and for $n>1$ by $t_n=1+t_{(n/2)}$ when $n$ is even and by $t_n=\frac{1}{t_{(n-1)}}$ when $n$ is odd. Given that $t_n=\frac{19}{87}$, the sum of the digits of $n$ is

$\textbf{(A)}\ 15 \qquad \textbf{(B)}\ 17 \qquad \textbf{(C)}\ 19 \qquad \textbf{(D)}\ 21 \qquad \textbf{(E)}\ 23$

Solution

Problem 30

In the figure, $\triangle ABC$ has $\angle A =45^{\circ}$ and $\angle B =30^{\circ}$. A line $DE$, with $D$ on $AB$ and $\angle ADE =60^{\circ}$, divides $\triangle ABC$ into two pieces of equal area. (Note: the figure may not be accurate; perhaps $E$ is on $CB$ instead of $AC$.) The ratio $\frac{AD}{AB}$ is

[asy] size((220)); draw((0,0)--(20,0)--(7,6)--cycle); draw((6,6)--(10,-1)); label("A", (0,0), W); label("B", (20,0), E); label("C", (7,6), NE); label("D", (9.5,-1), W); label("E", (5.9, 6.1), SW); label("$45^{\circ}$", (2.5,.5)); label("$60^{\circ}$", (7.8,.5)); label("$30^{\circ}$", (16.5,.5)); [/asy]

$\textbf{(A)}\ \frac{1}{\sqrt{2}} \qquad \textbf{(B)}\ \frac{2}{2+\sqrt{2}} \qquad \textbf{(C)}\ \frac{1}{\sqrt{3}} \qquad \textbf{(D)}\ \frac{1}{\sqrt[3]{6}}\qquad \textbf{(E)}\ \frac{1}{\sqrt[4]{12}}$

Solution