Difference between revisions of "1991 AJHSME Problems"

(Created page with '==Problem 1== Solution == Problem 2 == Solution == Problem 3 == [[1991 AJHSME Problems/Problem 3|Soluti…')
 
m
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
{{AJHSME Problems
 +
|year = 1991
 +
}}
 +
 
==Problem 1==
 
==Problem 1==
 +
 +
<math>1,000,000,000,000-777,777,777,777=</math>
 +
 +
<math>\text{(A)}\ 222,222,222,222 \qquad
 +
\text{(B)}\ 222,222,222,223 \qquad
 +
\text{(C)}\ 233,333,333,333 \qquad \\
 +
\text{(D)}\ 322,222,222,223 \qquad
 +
\text{(E)}\ 333,333,333,333</math>
  
 
[[1991 AJHSME Problems/Problem 1|Solution]]
 
[[1991 AJHSME Problems/Problem 1|Solution]]
  
 
== Problem 2 ==
 
== Problem 2 ==
 +
 +
<math>\frac{16+8}{4-2}=</math>
 +
 +
<math>\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20</math>
  
 
[[1991 AJHSME Problems/Problem 2|Solution]]
 
[[1991 AJHSME Problems/Problem 2|Solution]]
  
 
== Problem 3 ==
 
== Problem 3 ==
 +
 +
Two hundred thousand times two hundred thousand equals
 +
 +
<math>\text{(A)}\ \text{four hundred thousand} \qquad
 +
\text{(B)}\ \text{four million} \qquad
 +
\text{(C)}\ \text{forty thousand} \qquad  \\
 +
\text{(D)}\ \text{four hundred million} \qquad
 +
\text{(E)}\ \text{forty billion}</math>
  
 
[[1991 AJHSME Problems/Problem 3|Solution]]
 
[[1991 AJHSME Problems/Problem 3|Solution]]
  
 
== Problem 4 ==
 
== Problem 4 ==
 +
 +
If <math>991+993+995+997+999=5000-N</math>, then <math>N=</math>
 +
 +
<math>\text{(A)}\ 5 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ 25</math>
  
 
[[1991 AJHSME Problems/Problem 4|Solution]]
 
[[1991 AJHSME Problems/Problem 4|Solution]]
  
 
== Problem 5 ==
 
== Problem 5 ==
 +
 +
A "domino" is made up of two small squares:
 +
<asy>
 +
unitsize(12);
 +
fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black);
 +
draw((1,1)--(2,1)--(2,0)--(1,0));
 +
</asy>
 +
Which of the "checkerboards" illustrated below CANNOT be covered exactly and completely by a whole number of non-overlapping dominoes?
 +
 +
<asy>
 +
unitsize(12);
 +
fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black); fill((1,1)--(1,2)--(2,2)--(2,1)--cycle,black);
 +
fill((2,0)--(3,0)--(3,1)--(2,1)--cycle,black); fill((3,1)--(4,1)--(4,2)--(3,2)--cycle,black);
 +
fill((0,2)--(1,2)--(1,3)--(0,3)--cycle,black); fill((2,2)--(2,3)--(3,3)--(3,2)--cycle,black);
 +
draw((0,0)--(0,3)--(4,3)--(4,0)--cycle); draw((6,0)--(11,0)--(11,3)--(6,3)--cycle);
 +
fill((6,0)--(7,0)--(7,1)--(6,1)--cycle,black); fill((8,0)--(9,0)--(9,1)--(8,1)--cycle,black);
 +
fill((10,0)--(11,0)--(11,1)--(10,1)--cycle,black); fill((7,1)--(7,2)--(8,2)--(8,1)--cycle,black);
 +
fill((9,1)--(9,2)--(10,2)--(10,1)--cycle,black); fill((6,2)--(6,3)--(7,3)--(7,2)--cycle,black);
 +
fill((8,2)--(8,3)--(9,3)--(9,2)--cycle,black); fill((10,2)--(10,3)--(11,3)--(11,2)--cycle,black);
 +
draw((13,-1)--(13,3)--(17,3)--(17,-1)--cycle); fill((13,3)--(14,3)--(14,2)--(13,2)--cycle,black);
 +
fill((15,3)--(16,3)--(16,2)--(15,2)--cycle,black); fill((14,2)--(15,2)--(15,1)--(14,1)--cycle,black);
 +
fill((16,2)--(17,2)--(17,1)--(16,1)--cycle,black); fill((13,1)--(14,1)--(14,0)--(13,0)--cycle,black);
 +
fill((15,1)--(16,1)--(16,0)--(15,0)--cycle,black); fill((14,0)--(15,0)--(15,-1)--(14,-1)--cycle,black);
 +
fill((16,0)--(17,0)--(17,-1)--(16,-1)--cycle,black); draw((19,3)--(24,3)--(24,-1)--(19,-1)--cycle,black);
 +
fill((19,3)--(20,3)--(20,2)--(19,2)--cycle,black); fill((21,3)--(22,3)--(22,2)--(21,2)--cycle,black);
 +
fill((23,3)--(24,3)--(24,2)--(23,2)--cycle,black); fill((20,2)--(21,2)--(21,1)--(20,1)--cycle,black);
 +
fill((22,2)--(23,2)--(23,1)--(22,1)--cycle,black); fill((19,1)--(20,1)--(20,0)--(19,0)--cycle,black);
 +
fill((21,1)--(22,1)--(22,0)--(21,0)--cycle,black); fill((23,1)--(24,1)--(24,0)--(23,0)--cycle,black);
 +
fill((20,0)--(21,0)--(21,-1)--(20,-1)--cycle,black); fill((22,0)--(23,0)--(23,-1)--(22,-1)--cycle,black);
 +
draw((26,3)--(29,3)--(29,-3)--(26,-3)--cycle); fill((26,3)--(27,3)--(27,2)--(26,2)--cycle,black);
 +
fill((28,3)--(29,3)--(29,2)--(28,2)--cycle,black); fill((27,2)--(28,2)--(28,1)--(27,1)--cycle,black);
 +
fill((26,1)--(27,1)--(27,0)--(26,0)--cycle,black); fill((28,1)--(29,1)--(29,0)--(28,0)--cycle,black);
 +
fill((27,0)--(28,0)--(28,-1)--(27,-1)--cycle,black); fill((26,-1)--(27,-1)--(27,-2)--(26,-2)--cycle,black);
 +
fill((28,-1)--(29,-1)--(29,-2)--(28,-2)--cycle,black); fill((27,-2)--(28,-2)--(28,-3)--(27,-3)--cycle,black);
 +
</asy>
 +
 +
<math>\text{(A)}\ 3\times 4 \qquad \text{(B)}\ 3\times 5 \qquad \text{(C)}\ 4\times 4 \qquad \text{(D)}\ 4\times 5 \qquad \text{(E)}\ 6\times 3</math>
  
 
[[1991 AJHSME Problems/Problem 5|Solution]]
 
[[1991 AJHSME Problems/Problem 5|Solution]]
  
 
== Problem 6 ==
 
== Problem 6 ==
 +
 +
Which number in the array below is both the largest in its column and the smallest in its row?  (Columns go up and down, rows go right and left.)
 +
<cmath>\begin{tabular}[t]{ccccc}
 +
10 & 6 & 4 & 3 & 2 \\
 +
11 & 7 & 14 & 10 & 8 \\
 +
8 & 3 & 4 & 5 & 9 \\
 +
13 & 4 & 15 & 12 & 1 \\
 +
8 & 2 & 5 & 9 & 3
 +
\end{tabular}</cmath>
 +
 +
<math>\text{(A)}\ 1 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 15</math>
  
 
[[1991 AJHSME Problems/Problem 6|Solution]]
 
[[1991 AJHSME Problems/Problem 6|Solution]]
  
 
== Problem 7 ==
 
== Problem 7 ==
 +
 +
The value of <math>\frac{(487,000)(12,027,300)+(9,621,001)(487,000)}{(19,367)(.05)}</math> is closest to
 +
 +
<math>\text{(A)}\ 10,000,000 \qquad \text{(B)}\ 100,000,000 \qquad \text{(C)}\ 1,000,000,000 \qquad \text{(D)}\ 10,000,000,000 \qquad \text{(E)}\ 100,000,000,000</math>
  
 
[[1991 AJHSME Problems/Problem 7|Solution]]
 
[[1991 AJHSME Problems/Problem 7|Solution]]
  
 
== Problem 8 ==
 
== Problem 8 ==
 +
 +
What is the largest quotient that can be formed using two numbers chosen from the set <math>\{ -24, -3, -2, 1, 2, 8 \}</math>?
 +
 +
<math>\text{(A)}\ -24 \qquad \text{(B)}\ -3 \qquad \text{(C)}\ 8 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 24</math>
  
 
[[1991 AJHSME Problems/Problem 8|Solution]]
 
[[1991 AJHSME Problems/Problem 8|Solution]]
  
 
== Problem 9 ==
 
== Problem 9 ==
 +
 +
How many whole numbers from <math>1</math> through <math>46</math> are divisible by either <math>3</math> or <math>5</math> or both?
 +
 +
<math>\text{(A)}\ 18 \qquad \text{(B)}\ 21 \qquad \text{(C)}\ 24 \qquad \text{(D)}\ 25 \qquad \text{(E)}\ 27</math>
  
 
[[1991 AJHSME Problems/Problem 9|Solution]]
 
[[1991 AJHSME Problems/Problem 9|Solution]]
  
 
== Problem 10 ==
 
== Problem 10 ==
 +
 +
The area in square units of the region enclosed by parallelogram <math>ABCD</math> is
 +
 +
<asy>
 +
unitsize(24);
 +
pair A,B,C,D;
 +
A=(-1,0); B=(0,2); C=(4,2); D=(3,0);
 +
draw(A--B--C--D); draw((0,-1)--(0,3)); draw((-2,0)--(6,0));
 +
draw((-.25,2.75)--(0,3)--(.25,2.75)); draw((5.75,.25)--(6,0)--(5.75,-.25));
 +
dot(origin); dot(A); dot(B); dot(C); dot(D); label("$y$",(0,3),N); label("$x$",(6,0),E);
 +
label("$(0,0)$",origin,SE); label("$D (3,0)$",D,SE); label("$C (4,2)$",C,NE);
 +
label("$A$",A,SW); label("$B$",B,NW);
 +
</asy>
 +
 +
<math>\text{(A)}\ 6 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 18</math>
  
 
[[1991 AJHSME Problems/Problem 10|Solution]]
 
[[1991 AJHSME Problems/Problem 10|Solution]]
  
 
== Problem 11 ==
 
== Problem 11 ==
 +
 +
There are several sets of three different numbers whose sum is <math>15</math> which can be chosen from <math>\{ 1,2,3,4,5,6,7,8,9 \} </math>.  How many of these sets contain a <math>5</math>?
 +
 +
<math>\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 7</math>
  
 
[[1991 AJHSME Problems/Problem 11|Solution]]
 
[[1991 AJHSME Problems/Problem 11|Solution]]
  
 
== Problem 12 ==
 
== Problem 12 ==
 +
 +
If <math>\frac{2+3+4}{3}=\frac{1990+1991+1992}{N}</math>, then <math>N=</math>
 +
 +
<math>\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 1990 \qquad \text{(D)}\ 1991 \qquad \text{(E)}\ 1992</math>
  
 
[[1991 AJHSME Problems/Problem 12|Solution]]
 
[[1991 AJHSME Problems/Problem 12|Solution]]
  
 
== Problem 13 ==
 
== Problem 13 ==
 +
 +
How many zeros are at the end of the product
 +
<cmath>25\times 25\times 25\times 25\times 25\times 25\times 25\times 8\times 8\times 8?</cmath>
 +
 +
<math>\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 10 \qquad \text{(E)}\ 12</math>
  
 
[[1991 AJHSME Problems/Problem 13|Solution]]
 
[[1991 AJHSME Problems/Problem 13|Solution]]
  
 
== Problem 14 ==
 
== Problem 14 ==
 +
 +
Several students are competing in a series of three races.  A student earns <math>5</math> points for winning a race, <math>3</math> points for finishing second and <math>1</math> point for finishing third.  There are no ties.  What is the smallest number of points that a student must earn in the three races to be guaranteed of earning more points than any other student?
 +
 +
<math>\text{(A)}\ 9 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 11 \qquad \text{(D)}\ 13 \qquad \text{(E)}\ 15</math>
  
 
[[1991 AJHSME Problems/Problem 14|Solution]]
 
[[1991 AJHSME Problems/Problem 14|Solution]]
  
 
== Problem 15 ==
 
== Problem 15 ==
 +
 +
All six sides of a rectangular solid were rectangles.  A one-foot cube was cut out of the rectangular solid as shown.  The total number of square feet in the surface of the new solid is how many more or less than that of the original solid?
 +
 +
<asy>
 +
unitsize(24);
 +
draw((0,0)--(1,0)--(1,3)--(0,3)--cycle);
 +
draw((1,0)--(1+9*sqrt(3)/2,9/2)--(1+9*sqrt(3)/2,15/2)--(1+5*sqrt(3)/2,11/2)--(1+5*sqrt(3)/2,9/2)--(1+2*sqrt(3),4)--(1+2*sqrt(3),5)--(1,3));
 +
draw((0,3)--(2*sqrt(3),5)--(1+2*sqrt(3),5));
 +
draw((1+9*sqrt(3)/2,15/2)--(9*sqrt(3)/2,15/2)--(5*sqrt(3)/2,11/2)--(5*sqrt(3)/2,5));
 +
draw((1+5*sqrt(3)/2,9/2)--(1+2*sqrt(3),9/2)); draw((1+5*sqrt(3)/2,11/2)--(5*sqrt(3)/2,11/2));
 +
label("$1'$",(.5,0),S); label("$3'$",(1,1.5),E); label("$9'$",(1+9*sqrt(3)/4,9/4),S);
 +
label("$1'$",(1+9*sqrt(3)/4,17/4),S); label("$1'$",(1+5*sqrt(3)/2,5),E);label("$1'$",(1/2+5*sqrt(3)/2,11/2),S);
 +
</asy>
 +
 +
<math>\text{(A)}\ 2\text{ less} \qquad \text{(B)}\ 1\text{ less} \qquad \text{(C)}\ \text{the same} \qquad \text{(D)}\ 1\text{ more} \qquad \text{(E)}\ 2\text{ more}</math>
  
 
[[1991 AJHSME Problems/Problem 15|Solution]]
 
[[1991 AJHSME Problems/Problem 15|Solution]]
  
 
== Problem 16 ==
 
== Problem 16 ==
 +
 +
The <math>16</math> squares on a piece of paper are numbered as shown in the diagram.  While lying on a table, the paper is folded in half four times in the following sequence:
 +
 +
(1) fold the top half over the bottom half
 +
 +
(2) fold the bottom half over the top half
 +
 +
(3) fold the right half over the left half
 +
 +
(4) fold the left half over the right half.
 +
 +
Which numbered square is on top after step <math>4</math>?
 +
 +
<asy>
 +
unitsize(18);
 +
for(int a=0; a<5; ++a)
 +
{
 +
  draw((a,0)--(a,4));
 +
}
 +
for(int b=0; b<5; ++b)
 +
{
 +
  draw((0,b)--(4,b));
 +
}
 +
label("$1$",(0.5,3.1),N); label("$2$",(1.5,3.1),N); label("$3$",(2.5,3.1),N); label("$4$",(3.5,3.1),N);
 +
label("$5$",(0.5,2.1),N); label("$6$",(1.5,2.1),N); label("$7$",(2.5,2.1),N); label("$8$",(3.5,2.1),N);
 +
label("$9$",(0.5,1.1),N); label("$10$",(1.5,1.1),N); label("$11$",(2.5,1.1),N); label("$12$",(3.5,1.1),N);
 +
label("$13$",(0.5,0.1),N); label("$14$",(1.5,0.1),N); label("$15$",(2.5,0.1),N); label("$16$",(3.5,0.1),N);
 +
</asy>
 +
 +
<math>\text{(A)}\ 1 \qquad \text{(B)}\ 9 \qquad \text{(C)}\ 10 \qquad \text{(D)}\ 14 \qquad \text{(E)}\ 16</math>
  
 
[[1991 AJHSME Problems/Problem 16|Solution]]
 
[[1991 AJHSME Problems/Problem 16|Solution]]
  
 
== Problem 17 ==
 
== Problem 17 ==
 +
 +
An auditorium with <math>20</math> rows of seats has <math>10</math> seats in the first row.  Each successive row has one more seat than the previous row.  If students taking an exam are permitted to sit in any row, but not next to another student in that row, then the maximum number of students that can be seated for an exam is
 +
 +
<math>\text{(A)}\ 150 \qquad \text{(B)}\ 180 \qquad \text{(C)}\ 200 \qquad \text{(D)}\ 400 \qquad \text{(E)}\ 460</math>
  
 
[[1991 AJHSME Problems/Problem 17|Solution]]
 
[[1991 AJHSME Problems/Problem 17|Solution]]
  
 
== Problem 18 ==
 
== Problem 18 ==
 +
 +
The vertical axis indicates the number of employees, but the scale was accidentally omitted from this graph.  What percent of the employees at the Gauss company have worked there for <math>5</math> years or more?
 +
 +
<asy>
 +
for(int a=1; a<11; ++a)
 +
{
 +
  draw((a,0)--(a,-.5));
 +
}
 +
draw((0,10.5)--(0,0)--(10.5,0));
 +
label("$1$",(1,-.5),S); label("$2$",(2,-.5),S); label("$3$",(3,-.5),S); label("$4$",(4,-.5),S);
 +
label("$5$",(5,-.5),S); label("$6$",(6,-.5),S); label("$7$",(7,-.5),S); label("$8$",(8,-.5),S);
 +
label("$9$",(9,-.5),S); label("$10$",(10,-.5),S); label("Number of years with company",(5.5,-2),S);
 +
label("X",(1,0),N); label("X",(1,1),N); label("X",(1,2),N); label("X",(1,3),N); label("X",(1,4),N);
 +
label("X",(2,0),N); label("X",(2,1),N); label("X",(2,2),N); label("X",(2,3),N); label("X",(2,4),N);
 +
label("X",(3,0),N); label("X",(3,1),N); label("X",(3,2),N); label("X",(3,3),N);
 +
label("X",(3,4),N); label("X",(3,5),N); label("X",(3,6),N); label("X",(3,7),N);
 +
label("X",(4,0),N); label("X",(4,1),N); label("X",(4,2),N); label("X",(5,0),N); label("X",(5,1),N);
 +
label("X",(6,0),N); label("X",(6,1),N); label("X",(7,0),N); label("X",(7,1),N);
 +
label("X",(8,0),N); label("X",(9,0),N); label("X",(10,0),N);
 +
label("Gauss Company",(5.5,10),N);
 +
</asy>
 +
 +
<math>\text{(A)}\ 9\% \qquad \text{(B)}\ 23\frac{1}{3}\% \qquad \text{(C)}\ 30\% \qquad \text{(D)}\ 42\frac{6}{7}\% \qquad \text{(E)}\ 50\% </math>
  
 
[[1991 AJHSME Problems/Problem 18|Solution]]
 
[[1991 AJHSME Problems/Problem 18|Solution]]
  
 
== Problem 19 ==
 
== Problem 19 ==
 +
 +
The average (arithmetic mean) of <math>10</math> different positive whole numbers is <math>10</math>.  The largest possible value of any of these numbers is
 +
 +
<math>\text{(A)}\ 10 \qquad \text{(B)}\ 50 \qquad \text{(C)}\ 55 \qquad \text{(D)}\ 90 \qquad \text{(E)}\ 91</math>
  
 
[[1991 AJHSME Problems/Problem 19|Solution]]
 
[[1991 AJHSME Problems/Problem 19|Solution]]
  
 
== Problem 20 ==
 
== Problem 20 ==
 +
 +
In the addition problem, each digit has been replaced by a letter.  If different letters represent different digits then <math>C=</math>
 +
 +
<asy>
 +
unitsize(18);
 +
draw((-1,0)--(3,0));
 +
draw((-3/4,1/2)--(-1/4,1/2)); draw((-1/2,1/4)--(-1/2,3/4));
 +
label("$A$",(0.5,2.1),N); label("$B$",(1.5,2.1),N); label("$C$",(2.5,2.1),N);
 +
label("$A$",(1.5,1.1),N); label("$B$",(2.5,1.1),N); label("$A$",(2.5,0.1),N);
 +
label("$3$",(0.5,-.1),S); label("$0$",(1.5,-.1),S); label("$0$",(2.5,-.1),S);
 +
</asy>
 +
 +
<math>\text{(A)}\ 1 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 9</math>
  
 
[[1991 AJHSME Problems/Problem 20|Solution]]
 
[[1991 AJHSME Problems/Problem 20|Solution]]
  
 
== Problem 21 ==
 
== Problem 21 ==
 +
 +
For every <math>3^\circ </math> rise in temperature, the volume of a certain gas expands by <math>4</math> cubic centimeters.  If the volume of the gas is <math>24</math> cubic centimeters when the temperature is <math>32^\circ </math>, what was the volume of the gas in cubic centimeters when the temperature was <math>20^\circ </math>?
 +
 +
<math>\text{(A)}\ 8 \qquad \text{(B)}\ 12 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 40</math>
  
 
[[1991 AJHSME Problems/Problem 21|Solution]]
 
[[1991 AJHSME Problems/Problem 21|Solution]]
  
 
== Problem 22 ==
 
== Problem 22 ==
 +
 +
Each spinner is divided into <math>3</math> equal parts.  The results obtained from spinning the two spinners are multiplied.  What is the probability that this product is an even number?
 +
 +
<asy>
 +
draw(circle((0,0),2)); draw(circle((5,0),2));
 +
draw((0,0)--(sqrt(3),1)); draw((0,0)--(-sqrt(3),1)); draw((0,0)--(0,-2));
 +
draw((5,0)--(5+sqrt(3),1)); draw((5,0)--(5-sqrt(3),1)); draw((5,0)--(5,-2));
 +
fill((0,5/3)--(2/3,7/3)--(1/3,7/3)--(1/3,3)--(-1/3,3)--(-1/3,7/3)--(-2/3,7/3)--cycle,black);
 +
fill((5,5/3)--(17/3,7/3)--(16/3,7/3)--(16/3,3)--(14/3,3)--(14/3,7/3)--(13/3,7/3)--cycle,black);
 +
label("$1$",(0,1/2),N); label("$2$",(sqrt(3)/4,-1/4),ESE); label("$3$",(-sqrt(3)/4,-1/4),WSW);
 +
label("$4$",(5,1/2),N); label("$5$",(5+sqrt(3)/4,-1/4),ESE); label("$6$",(5-sqrt(3)/4,-1/4),WSW);
 +
</asy>
 +
 +
<math>\text{(A)}\ \frac{1}{3} \qquad \text{(B)}\ \frac{1}{2} \qquad \text{(C)}\ \frac{2}{3} \qquad \text{(D)}\ \frac{7}{9} \qquad \text{(E)}\ 1</math>
  
 
[[1991 AJHSME Problems/Problem 22|Solution]]
 
[[1991 AJHSME Problems/Problem 22|Solution]]
  
 
== Problem 23 ==
 
== Problem 23 ==
 +
 +
The Pythagoras High School band has <math>100</math> female and <math>80</math> male members.  The Pythagoras High School orchestra has <math>80</math> female and <math>100</math> male members.  There are <math>60</math> females who are members in both band and orchestra.  Altogether, there are <math>230</math> students who are in either band or orchestra or both.  The number of males in the band who are NOT in the orchestra is
 +
 +
<math>\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 50 \qquad \text{(E)}\ 70</math>
  
 
[[1991 AJHSME Problems/Problem 23|Solution]]
 
[[1991 AJHSME Problems/Problem 23|Solution]]
  
 
== Problem 24 ==
 
== Problem 24 ==
 +
 +
A cube of edge <math>3</math> cm is cut into <math>N</math> smaller cubes, not all the same size.  If the edge of each of the smaller cubes is a whole number of centimeters, then <math>N=</math>
 +
 +
<math>\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20</math>
  
 
[[1991 AJHSME Problems/Problem 24|Solution]]
 
[[1991 AJHSME Problems/Problem 24|Solution]]
  
 
== Problem 25 ==
 
== Problem 25 ==
 +
 +
An equilateral triangle is originally painted black.  Each time the triangle is changed, the middle fourth of each black triangle turns white.  After five changes, what fractional part of the original area of the black triangle remains black?
 +
 +
<asy>
 +
unitsize(36);
 +
fill((0,0)--(2,0)--(1,sqrt(3))--cycle,gray); draw((0,0)--(2,0)--(1,sqrt(3))--cycle,linewidth(1));
 +
fill((4,0)--(6,0)--(5,sqrt(3))--cycle,gray); fill((5,0)--(9/2,sqrt(3)/2)--(11/2,sqrt(3)/2)--cycle,white);
 +
draw((5,sqrt(3))--(4,0)--(5,0)--(9/2,sqrt(3)/2)--(11/2,sqrt(3)/2)--(5,0)--(6,0)--cycle,linewidth(1));
 +
fill((8,0)--(10,0)--(9,sqrt(3))--cycle,gray); fill((9,0)--(17/2,sqrt(3)/2)--(19/2,sqrt(3)/2)--cycle,white);
 +
fill((17/2,0)--(33/4,sqrt(3)/4)--(35/4,sqrt(3)/4)--cycle,white);
 +
fill((9,sqrt(3)/2)--(35/4,3*sqrt(3)/4)--(37/4,3*sqrt(3)/4)--cycle,white);
 +
fill((19/2,0)--(37/4,sqrt(3)/4)--(39/4,sqrt(3)/4)--cycle,white);
 +
draw((9,sqrt(3))--(35/4,3*sqrt(3)/4)--(37/4,3*sqrt(3)/4)--(9,sqrt(3)/2)--(35/4,3*sqrt(3)/4)--(33/4,sqrt(3)/4)--(35/4,sqrt(3)/4)--(17/2,0)--(33/4,sqrt(3)/4)--(8,0)--(9,0)--(17/2,sqrt(3)/2)--(19/2,sqrt(3)/2)--(9,0)--(19/2,0)--(37/4,sqrt(3)/4)--(39/4,sqrt(3)/4)--(19/2,0)--(10,0)--cycle,linewidth(1));
 +
label("Change 1",(3,3*sqrt(3)/4),N); label("$\Longrightarrow $",(3,5*sqrt(3)/8),S);
 +
label("Change 2",(7,3*sqrt(3)/4),N); label("$\Longrightarrow $",(7,5*sqrt(3)/8),S);
 +
</asy>
 +
 +
<math>\text{(A)}\ \frac{1}{1024} \qquad \text{(B)}\ \frac{15}{64} \qquad \text{(C)}\ \frac{243}{1024} \qquad \text{(D)}\ \frac{1}{4} \qquad \text{(E)}\ \frac{81}{256}</math>
  
 
[[1991 AJHSME Problems/Problem 25|Solution]]
 
[[1991 AJHSME Problems/Problem 25|Solution]]
Line 104: Line 357:
 
* [[AJHSME Problems and Solutions]]
 
* [[AJHSME Problems and Solutions]]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
 +
 +
 +
{{MAA Notice}}

Latest revision as of 12:37, 19 February 2020

1991 AJHSME (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive ? points for each correct answer, ? points for each problem left unanswered, and ? points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers.
  4. Figures are not necessarily drawn to scale.
  5. You will have ? minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

$1,000,000,000,000-777,777,777,777=$

$\text{(A)}\ 222,222,222,222 \qquad  \text{(B)}\ 222,222,222,223 \qquad  \text{(C)}\ 233,333,333,333 \qquad \\ \text{(D)}\ 322,222,222,223 \qquad  \text{(E)}\ 333,333,333,333$

Solution

Problem 2

$\frac{16+8}{4-2}=$

$\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20$

Solution

Problem 3

Two hundred thousand times two hundred thousand equals

$\text{(A)}\ \text{four hundred thousand} \qquad  \text{(B)}\ \text{four million} \qquad  \text{(C)}\ \text{forty thousand} \qquad  \\ \text{(D)}\ \text{four hundred million} \qquad  \text{(E)}\ \text{forty billion}$

Solution

Problem 4

If $991+993+995+997+999=5000-N$, then $N=$

$\text{(A)}\ 5 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ 25$

Solution

Problem 5

A "domino" is made up of two small squares: [asy] unitsize(12); fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black);  draw((1,1)--(2,1)--(2,0)--(1,0)); [/asy] Which of the "checkerboards" illustrated below CANNOT be covered exactly and completely by a whole number of non-overlapping dominoes?

[asy] unitsize(12); fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,black); fill((1,1)--(1,2)--(2,2)--(2,1)--cycle,black); fill((2,0)--(3,0)--(3,1)--(2,1)--cycle,black); fill((3,1)--(4,1)--(4,2)--(3,2)--cycle,black); fill((0,2)--(1,2)--(1,3)--(0,3)--cycle,black); fill((2,2)--(2,3)--(3,3)--(3,2)--cycle,black); draw((0,0)--(0,3)--(4,3)--(4,0)--cycle); draw((6,0)--(11,0)--(11,3)--(6,3)--cycle); fill((6,0)--(7,0)--(7,1)--(6,1)--cycle,black); fill((8,0)--(9,0)--(9,1)--(8,1)--cycle,black); fill((10,0)--(11,0)--(11,1)--(10,1)--cycle,black); fill((7,1)--(7,2)--(8,2)--(8,1)--cycle,black); fill((9,1)--(9,2)--(10,2)--(10,1)--cycle,black); fill((6,2)--(6,3)--(7,3)--(7,2)--cycle,black); fill((8,2)--(8,3)--(9,3)--(9,2)--cycle,black); fill((10,2)--(10,3)--(11,3)--(11,2)--cycle,black); draw((13,-1)--(13,3)--(17,3)--(17,-1)--cycle); fill((13,3)--(14,3)--(14,2)--(13,2)--cycle,black); fill((15,3)--(16,3)--(16,2)--(15,2)--cycle,black); fill((14,2)--(15,2)--(15,1)--(14,1)--cycle,black); fill((16,2)--(17,2)--(17,1)--(16,1)--cycle,black); fill((13,1)--(14,1)--(14,0)--(13,0)--cycle,black); fill((15,1)--(16,1)--(16,0)--(15,0)--cycle,black); fill((14,0)--(15,0)--(15,-1)--(14,-1)--cycle,black); fill((16,0)--(17,0)--(17,-1)--(16,-1)--cycle,black); draw((19,3)--(24,3)--(24,-1)--(19,-1)--cycle,black); fill((19,3)--(20,3)--(20,2)--(19,2)--cycle,black); fill((21,3)--(22,3)--(22,2)--(21,2)--cycle,black); fill((23,3)--(24,3)--(24,2)--(23,2)--cycle,black); fill((20,2)--(21,2)--(21,1)--(20,1)--cycle,black); fill((22,2)--(23,2)--(23,1)--(22,1)--cycle,black); fill((19,1)--(20,1)--(20,0)--(19,0)--cycle,black); fill((21,1)--(22,1)--(22,0)--(21,0)--cycle,black); fill((23,1)--(24,1)--(24,0)--(23,0)--cycle,black); fill((20,0)--(21,0)--(21,-1)--(20,-1)--cycle,black); fill((22,0)--(23,0)--(23,-1)--(22,-1)--cycle,black); draw((26,3)--(29,3)--(29,-3)--(26,-3)--cycle); fill((26,3)--(27,3)--(27,2)--(26,2)--cycle,black); fill((28,3)--(29,3)--(29,2)--(28,2)--cycle,black); fill((27,2)--(28,2)--(28,1)--(27,1)--cycle,black); fill((26,1)--(27,1)--(27,0)--(26,0)--cycle,black); fill((28,1)--(29,1)--(29,0)--(28,0)--cycle,black); fill((27,0)--(28,0)--(28,-1)--(27,-1)--cycle,black); fill((26,-1)--(27,-1)--(27,-2)--(26,-2)--cycle,black); fill((28,-1)--(29,-1)--(29,-2)--(28,-2)--cycle,black); fill((27,-2)--(28,-2)--(28,-3)--(27,-3)--cycle,black); [/asy]

$\text{(A)}\ 3\times 4 \qquad \text{(B)}\ 3\times 5 \qquad \text{(C)}\ 4\times 4 \qquad \text{(D)}\ 4\times 5 \qquad \text{(E)}\ 6\times 3$

Solution

Problem 6

Which number in the array below is both the largest in its column and the smallest in its row? (Columns go up and down, rows go right and left.) \[\begin{tabular}[t]{ccccc} 10 & 6 & 4 & 3 & 2 \\ 11 & 7 & 14 & 10 & 8 \\ 8 & 3 & 4 & 5 & 9 \\ 13 & 4 & 15 & 12 & 1 \\ 8 & 2 & 5 & 9 & 3 \end{tabular}\]

$\text{(A)}\ 1 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 7 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 15$

Solution

Problem 7

The value of $\frac{(487,000)(12,027,300)+(9,621,001)(487,000)}{(19,367)(.05)}$ is closest to

$\text{(A)}\ 10,000,000 \qquad \text{(B)}\ 100,000,000 \qquad \text{(C)}\ 1,000,000,000 \qquad \text{(D)}\ 10,000,000,000 \qquad \text{(E)}\ 100,000,000,000$

Solution

Problem 8

What is the largest quotient that can be formed using two numbers chosen from the set $\{ -24, -3, -2, 1, 2, 8 \}$?

$\text{(A)}\ -24 \qquad \text{(B)}\ -3 \qquad \text{(C)}\ 8 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 24$

Solution

Problem 9

How many whole numbers from $1$ through $46$ are divisible by either $3$ or $5$ or both?

$\text{(A)}\ 18 \qquad \text{(B)}\ 21 \qquad \text{(C)}\ 24 \qquad \text{(D)}\ 25 \qquad \text{(E)}\ 27$

Solution

Problem 10

The area in square units of the region enclosed by parallelogram $ABCD$ is

[asy] unitsize(24); pair A,B,C,D; A=(-1,0); B=(0,2); C=(4,2); D=(3,0);  draw(A--B--C--D); draw((0,-1)--(0,3)); draw((-2,0)--(6,0)); draw((-.25,2.75)--(0,3)--(.25,2.75)); draw((5.75,.25)--(6,0)--(5.75,-.25)); dot(origin); dot(A); dot(B); dot(C); dot(D); label("$y$",(0,3),N); label("$x$",(6,0),E); label("$(0,0)$",origin,SE); label("$D (3,0)$",D,SE); label("$C (4,2)$",C,NE); label("$A$",A,SW); label("$B$",B,NW); [/asy]

$\text{(A)}\ 6 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 18$

Solution

Problem 11

There are several sets of three different numbers whose sum is $15$ which can be chosen from $\{ 1,2,3,4,5,6,7,8,9 \}$. How many of these sets contain a $5$?

$\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 7$

Solution

Problem 12

If $\frac{2+3+4}{3}=\frac{1990+1991+1992}{N}$, then $N=$

$\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 1990 \qquad \text{(D)}\ 1991 \qquad \text{(E)}\ 1992$

Solution

Problem 13

How many zeros are at the end of the product \[25\times 25\times 25\times 25\times 25\times 25\times 25\times 8\times 8\times 8?\]

$\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 10 \qquad \text{(E)}\ 12$

Solution

Problem 14

Several students are competing in a series of three races. A student earns $5$ points for winning a race, $3$ points for finishing second and $1$ point for finishing third. There are no ties. What is the smallest number of points that a student must earn in the three races to be guaranteed of earning more points than any other student?

$\text{(A)}\ 9 \qquad \text{(B)}\ 10 \qquad \text{(C)}\ 11 \qquad \text{(D)}\ 13 \qquad \text{(E)}\ 15$

Solution

Problem 15

All six sides of a rectangular solid were rectangles. A one-foot cube was cut out of the rectangular solid as shown. The total number of square feet in the surface of the new solid is how many more or less than that of the original solid?

[asy] unitsize(24); draw((0,0)--(1,0)--(1,3)--(0,3)--cycle);  draw((1,0)--(1+9*sqrt(3)/2,9/2)--(1+9*sqrt(3)/2,15/2)--(1+5*sqrt(3)/2,11/2)--(1+5*sqrt(3)/2,9/2)--(1+2*sqrt(3),4)--(1+2*sqrt(3),5)--(1,3)); draw((0,3)--(2*sqrt(3),5)--(1+2*sqrt(3),5)); draw((1+9*sqrt(3)/2,15/2)--(9*sqrt(3)/2,15/2)--(5*sqrt(3)/2,11/2)--(5*sqrt(3)/2,5)); draw((1+5*sqrt(3)/2,9/2)--(1+2*sqrt(3),9/2)); draw((1+5*sqrt(3)/2,11/2)--(5*sqrt(3)/2,11/2)); label("$1'$",(.5,0),S); label("$3'$",(1,1.5),E); label("$9'$",(1+9*sqrt(3)/4,9/4),S); label("$1'$",(1+9*sqrt(3)/4,17/4),S); label("$1'$",(1+5*sqrt(3)/2,5),E);label("$1'$",(1/2+5*sqrt(3)/2,11/2),S); [/asy]

$\text{(A)}\ 2\text{ less} \qquad \text{(B)}\ 1\text{ less} \qquad \text{(C)}\ \text{the same} \qquad \text{(D)}\ 1\text{ more} \qquad \text{(E)}\ 2\text{ more}$

Solution

Problem 16

The $16$ squares on a piece of paper are numbered as shown in the diagram. While lying on a table, the paper is folded in half four times in the following sequence:

(1) fold the top half over the bottom half

(2) fold the bottom half over the top half

(3) fold the right half over the left half

(4) fold the left half over the right half.

Which numbered square is on top after step $4$?

[asy] unitsize(18); for(int a=0; a<5; ++a)  {   draw((a,0)--(a,4));  } for(int b=0; b<5; ++b)  {   draw((0,b)--(4,b));  } label("$1$",(0.5,3.1),N); label("$2$",(1.5,3.1),N); label("$3$",(2.5,3.1),N); label("$4$",(3.5,3.1),N); label("$5$",(0.5,2.1),N); label("$6$",(1.5,2.1),N); label("$7$",(2.5,2.1),N); label("$8$",(3.5,2.1),N); label("$9$",(0.5,1.1),N); label("$10$",(1.5,1.1),N); label("$11$",(2.5,1.1),N); label("$12$",(3.5,1.1),N); label("$13$",(0.5,0.1),N); label("$14$",(1.5,0.1),N); label("$15$",(2.5,0.1),N); label("$16$",(3.5,0.1),N); [/asy]

$\text{(A)}\ 1 \qquad \text{(B)}\ 9 \qquad \text{(C)}\ 10 \qquad \text{(D)}\ 14 \qquad \text{(E)}\ 16$

Solution

Problem 17

An auditorium with $20$ rows of seats has $10$ seats in the first row. Each successive row has one more seat than the previous row. If students taking an exam are permitted to sit in any row, but not next to another student in that row, then the maximum number of students that can be seated for an exam is

$\text{(A)}\ 150 \qquad \text{(B)}\ 180 \qquad \text{(C)}\ 200 \qquad \text{(D)}\ 400 \qquad \text{(E)}\ 460$

Solution

Problem 18

The vertical axis indicates the number of employees, but the scale was accidentally omitted from this graph. What percent of the employees at the Gauss company have worked there for $5$ years or more?

[asy] for(int a=1; a<11; ++a)  {   draw((a,0)--(a,-.5));  } draw((0,10.5)--(0,0)--(10.5,0)); label("$1$",(1,-.5),S); label("$2$",(2,-.5),S); label("$3$",(3,-.5),S); label("$4$",(4,-.5),S);  label("$5$",(5,-.5),S); label("$6$",(6,-.5),S); label("$7$",(7,-.5),S); label("$8$",(8,-.5),S); label("$9$",(9,-.5),S); label("$10$",(10,-.5),S); label("Number of years with company",(5.5,-2),S); label("X",(1,0),N); label("X",(1,1),N); label("X",(1,2),N); label("X",(1,3),N); label("X",(1,4),N); label("X",(2,0),N); label("X",(2,1),N); label("X",(2,2),N); label("X",(2,3),N); label("X",(2,4),N); label("X",(3,0),N); label("X",(3,1),N); label("X",(3,2),N); label("X",(3,3),N); label("X",(3,4),N); label("X",(3,5),N); label("X",(3,6),N); label("X",(3,7),N); label("X",(4,0),N); label("X",(4,1),N); label("X",(4,2),N); label("X",(5,0),N); label("X",(5,1),N); label("X",(6,0),N); label("X",(6,1),N); label("X",(7,0),N); label("X",(7,1),N); label("X",(8,0),N); label("X",(9,0),N); label("X",(10,0),N); label("Gauss Company",(5.5,10),N); [/asy]

$\text{(A)}\ 9\% \qquad \text{(B)}\ 23\frac{1}{3}\% \qquad \text{(C)}\ 30\% \qquad \text{(D)}\ 42\frac{6}{7}\% \qquad \text{(E)}\ 50\%$

Solution

Problem 19

The average (arithmetic mean) of $10$ different positive whole numbers is $10$. The largest possible value of any of these numbers is

$\text{(A)}\ 10 \qquad \text{(B)}\ 50 \qquad \text{(C)}\ 55 \qquad \text{(D)}\ 90 \qquad \text{(E)}\ 91$

Solution

Problem 20

In the addition problem, each digit has been replaced by a letter. If different letters represent different digits then $C=$

[asy] unitsize(18); draw((-1,0)--(3,0)); draw((-3/4,1/2)--(-1/4,1/2)); draw((-1/2,1/4)--(-1/2,3/4)); label("$A$",(0.5,2.1),N); label("$B$",(1.5,2.1),N); label("$C$",(2.5,2.1),N); label("$A$",(1.5,1.1),N); label("$B$",(2.5,1.1),N); label("$A$",(2.5,0.1),N); label("$3$",(0.5,-.1),S); label("$0$",(1.5,-.1),S); label("$0$",(2.5,-.1),S); [/asy]

$\text{(A)}\ 1 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 9$

Solution

Problem 21

For every $3^\circ$ rise in temperature, the volume of a certain gas expands by $4$ cubic centimeters. If the volume of the gas is $24$ cubic centimeters when the temperature is $32^\circ$, what was the volume of the gas in cubic centimeters when the temperature was $20^\circ$?

$\text{(A)}\ 8 \qquad \text{(B)}\ 12 \qquad \text{(C)}\ 15 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 40$

Solution

Problem 22

Each spinner is divided into $3$ equal parts. The results obtained from spinning the two spinners are multiplied. What is the probability that this product is an even number?

[asy] draw(circle((0,0),2)); draw(circle((5,0),2)); draw((0,0)--(sqrt(3),1)); draw((0,0)--(-sqrt(3),1)); draw((0,0)--(0,-2)); draw((5,0)--(5+sqrt(3),1)); draw((5,0)--(5-sqrt(3),1)); draw((5,0)--(5,-2)); fill((0,5/3)--(2/3,7/3)--(1/3,7/3)--(1/3,3)--(-1/3,3)--(-1/3,7/3)--(-2/3,7/3)--cycle,black); fill((5,5/3)--(17/3,7/3)--(16/3,7/3)--(16/3,3)--(14/3,3)--(14/3,7/3)--(13/3,7/3)--cycle,black); label("$1$",(0,1/2),N); label("$2$",(sqrt(3)/4,-1/4),ESE); label("$3$",(-sqrt(3)/4,-1/4),WSW); label("$4$",(5,1/2),N); label("$5$",(5+sqrt(3)/4,-1/4),ESE); label("$6$",(5-sqrt(3)/4,-1/4),WSW); [/asy]

$\text{(A)}\ \frac{1}{3} \qquad \text{(B)}\ \frac{1}{2} \qquad \text{(C)}\ \frac{2}{3} \qquad \text{(D)}\ \frac{7}{9} \qquad \text{(E)}\ 1$

Solution

Problem 23

The Pythagoras High School band has $100$ female and $80$ male members. The Pythagoras High School orchestra has $80$ female and $100$ male members. There are $60$ females who are members in both band and orchestra. Altogether, there are $230$ students who are in either band or orchestra or both. The number of males in the band who are NOT in the orchestra is

$\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 50 \qquad \text{(E)}\ 70$

Solution

Problem 24

A cube of edge $3$ cm is cut into $N$ smaller cubes, not all the same size. If the edge of each of the smaller cubes is a whole number of centimeters, then $N=$

$\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20$

Solution

Problem 25

An equilateral triangle is originally painted black. Each time the triangle is changed, the middle fourth of each black triangle turns white. After five changes, what fractional part of the original area of the black triangle remains black?

[asy] unitsize(36); fill((0,0)--(2,0)--(1,sqrt(3))--cycle,gray); draw((0,0)--(2,0)--(1,sqrt(3))--cycle,linewidth(1));  fill((4,0)--(6,0)--(5,sqrt(3))--cycle,gray); fill((5,0)--(9/2,sqrt(3)/2)--(11/2,sqrt(3)/2)--cycle,white); draw((5,sqrt(3))--(4,0)--(5,0)--(9/2,sqrt(3)/2)--(11/2,sqrt(3)/2)--(5,0)--(6,0)--cycle,linewidth(1)); fill((8,0)--(10,0)--(9,sqrt(3))--cycle,gray); fill((9,0)--(17/2,sqrt(3)/2)--(19/2,sqrt(3)/2)--cycle,white); fill((17/2,0)--(33/4,sqrt(3)/4)--(35/4,sqrt(3)/4)--cycle,white); fill((9,sqrt(3)/2)--(35/4,3*sqrt(3)/4)--(37/4,3*sqrt(3)/4)--cycle,white); fill((19/2,0)--(37/4,sqrt(3)/4)--(39/4,sqrt(3)/4)--cycle,white); draw((9,sqrt(3))--(35/4,3*sqrt(3)/4)--(37/4,3*sqrt(3)/4)--(9,sqrt(3)/2)--(35/4,3*sqrt(3)/4)--(33/4,sqrt(3)/4)--(35/4,sqrt(3)/4)--(17/2,0)--(33/4,sqrt(3)/4)--(8,0)--(9,0)--(17/2,sqrt(3)/2)--(19/2,sqrt(3)/2)--(9,0)--(19/2,0)--(37/4,sqrt(3)/4)--(39/4,sqrt(3)/4)--(19/2,0)--(10,0)--cycle,linewidth(1)); label("Change 1",(3,3*sqrt(3)/4),N); label("$\Longrightarrow $",(3,5*sqrt(3)/8),S); label("Change 2",(7,3*sqrt(3)/4),N); label("$\Longrightarrow $",(7,5*sqrt(3)/8),S); [/asy]

$\text{(A)}\ \frac{1}{1024} \qquad \text{(B)}\ \frac{15}{64} \qquad \text{(C)}\ \frac{243}{1024} \qquad \text{(D)}\ \frac{1}{4} \qquad \text{(E)}\ \frac{81}{256}$

Solution

See also

1991 AJHSME (ProblemsAnswer KeyResources)
Preceded by
1990 AJHSME
Followed by
1992 AJHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png