Difference between revisions of "2020 AMC 12B Problems/Problem 8"

(Redirected page to 2020 AMC 10B Problems/Problem 9)
(Tag: New redirect)
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
==Problem==
+
#REDIRECT [[2020 AMC 10B Problems/Problem 9]]
 
 
How many ordered pairs of integers <math>(x,y)</math> satisfy the equation <cmath>x^{2020}+y^2=2y</cmath>
 
 
 
==Solution==
 
Set it up as a quadratic in terms of y:
 
<cmath>y^2-2y+x^{2020}=0</cmath>
 
Then the discriminant is
 
<cmath>\Delta = 4-4x^{2020}</cmath>
 
This will clearly only yield real solutions when <math>x^{2020} \leq 1</math>, because it is always positive.
 
Then <math>x=-1,0,1</math>. Checking each one:
 
<math>-1</math> and <math>1</math> are the same when raised to the 2020th power:
 
<cmath>y^2-2y+1=(y-1)^2=0</cmath>
 
This has only has solutions <math>1</math>, so <math>(\pm 1,1)</math> are solutions.
 
Next, if <math>x=0</math>:
 
<cmath>y^2-2y=0</cmath>
 
Which has 2 solutions, so <math>(0,2)</math> and <math>(0,0)</math>
 
 
 
These are the only 4 solutions, so <math>\boxed{D}</math>
 
 
 
==See Also==
 
 
 
{{AMC12 box|year=2020|ab=B|num-b=7|num-a=9}}
 
{{MAA Notice}}
 

Latest revision as of 20:28, 12 February 2020