Difference between revisions of "2020 AMC 12B Problems/Problem 8"
m |
|||
Line 5: | Line 5: | ||
<math>\textbf{(A) } 1 \qquad\textbf{(B) } 2 \qquad\textbf{(C) } 3 \qquad\textbf{(D) } 4 \qquad\textbf{(E) } \text{infinitely many}</math> | <math>\textbf{(A) } 1 \qquad\textbf{(B) } 2 \qquad\textbf{(C) } 3 \qquad\textbf{(D) } 4 \qquad\textbf{(E) } \text{infinitely many}</math> | ||
− | ==Solution== | + | ==Solution, x first== |
Set it up as a quadratic in terms of y: | Set it up as a quadratic in terms of y: | ||
<cmath>y^2-2y+x^{2020}=0</cmath> | <cmath>y^2-2y+x^{2020}=0</cmath> | ||
Line 21: | Line 21: | ||
These are the only 4 solutions, so <math>\boxed{\textbf{(D) } 4}</math> | These are the only 4 solutions, so <math>\boxed{\textbf{(D) } 4}</math> | ||
− | ==Solution 2== | + | ==Solution 2, y first== |
Move the <math>y^2</math> term to the other side to get <math>x^{2020}=2y-y^2 = y(2-y)</math>. Because <math>x^{2020} \geq 0</math> for all <math>x</math>, then <math>y(2-y) \geq 0 \Rightarrow y = 0,1,2</math>. If <math>y=0</math> or <math>y=2</math>, the right side is <math>0</math> and therefore <math>x=0</math>. When <math>y=1</math>, the right side become <math>1</math>, therefore <math>x=1,-1</math>. Our solutions are <math>(0,2)</math>, <math>(0,0)</math>, <math>(1,1)</math>, <math>(-1,1)</math>. There are <math>4</math> solutions, so the answer is <math>\boxed{\textbf{(D) } 4}</math> | Move the <math>y^2</math> term to the other side to get <math>x^{2020}=2y-y^2 = y(2-y)</math>. Because <math>x^{2020} \geq 0</math> for all <math>x</math>, then <math>y(2-y) \geq 0 \Rightarrow y = 0,1,2</math>. If <math>y=0</math> or <math>y=2</math>, the right side is <math>0</math> and therefore <math>x=0</math>. When <math>y=1</math>, the right side become <math>1</math>, therefore <math>x=1,-1</math>. Our solutions are <math>(0,2)</math>, <math>(0,0)</math>, <math>(1,1)</math>, <math>(-1,1)</math>. There are <math>4</math> solutions, so the answer is <math>\boxed{\textbf{(D) } 4}</math> |
Revision as of 10:52, 8 February 2020
Problem
How many ordered pairs of integers satisfy the equation
Solution, x first
Set it up as a quadratic in terms of y: Then the discriminant is This will clearly only yield real solutions when , because it is always positive. Then . Checking each one: and are the same when raised to the 2020th power: This has only has solutions , so are solutions. Next, if : Which has 2 solutions, so and
These are the only 4 solutions, so
Solution 2, y first
Move the term to the other side to get . Because for all , then . If or , the right side is and therefore . When , the right side become , therefore . Our solutions are , , , . There are solutions, so the answer is
Video Solution
~IceMatrix
See Also
2020 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.