Difference between revisions of "2000 AMC 12 Problems"
(→Problem 12) |
m |
||
Line 5: | Line 5: | ||
<math> \mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 } </math> | <math> \mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 } </math> | ||
− | [[2000 AMC 12/Problem 1|Solution]] | + | [[2000 AMC 12 Problems/Problem 1|Solution]] |
== Problem 2 == | == Problem 2 == | ||
Line 14: | Line 14: | ||
− | [[2000 AMC 12/Problem 2|Solution]] | + | [[2000 AMC 12 Problems/Problem 2|Solution]] |
== Problem 3 == | == Problem 3 == | ||
Line 22: | Line 22: | ||
<math> \mathrm{(A) \ 40 } \qquad \mathrm{(B) \ 50 } \qquad \mathrm{(C) \ 55 } \qquad \mathrm{(D) \ 60 } \qquad \mathrm{(E) \ 75 } </math> | <math> \mathrm{(A) \ 40 } \qquad \mathrm{(B) \ 50 } \qquad \mathrm{(C) \ 55 } \qquad \mathrm{(D) \ 60 } \qquad \mathrm{(E) \ 75 } </math> | ||
− | [[2000 AMC 12/Problem 3|Solution]] | + | [[2000 AMC 12 Problems/Problem 3|Solution]] |
== Problem 4 == | == Problem 4 == | ||
Line 30: | Line 30: | ||
<math> \mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 4 } \qquad \mathrm{(C) \ 6 } \qquad \mathrm{(D) \ 7 } \qquad \mathrm{(E) \ 9 } </math> | <math> \mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 4 } \qquad \mathrm{(C) \ 6 } \qquad \mathrm{(D) \ 7 } \qquad \mathrm{(E) \ 9 } </math> | ||
− | [[2000 AMC 12/Problem 4|Solution]] | + | [[2000 AMC 12 Problems/Problem 4|Solution]] |
== Problem 5 == | == Problem 5 == | ||
Line 38: | Line 38: | ||
<math> \mathrm{(A) \ -2 } \qquad \mathrm{(B) \ 2 } \qquad \mathrm{(C) \ 2-2p } \qquad \mathrm{(D) \ 2p-2 } \qquad \mathrm{(E) \ |2p-2| } </math> | <math> \mathrm{(A) \ -2 } \qquad \mathrm{(B) \ 2 } \qquad \mathrm{(C) \ 2-2p } \qquad \mathrm{(D) \ 2p-2 } \qquad \mathrm{(E) \ |2p-2| } </math> | ||
− | [[2000 AMC 12/Problem 5|Solution]] | + | [[2000 AMC 12 Problems/Problem 5|Solution]] |
== Problem 6 == | == Problem 6 == | ||
Line 46: | Line 46: | ||
<math> \mathrm{(A) \ 21 } \qquad \mathrm{(B) \ 60 } \qquad \mathrm{(C) \ 119 } \qquad \mathrm{(D) \ 180 } \qquad \mathrm{(E) \ 231 } </math> | <math> \mathrm{(A) \ 21 } \qquad \mathrm{(B) \ 60 } \qquad \mathrm{(C) \ 119 } \qquad \mathrm{(D) \ 180 } \qquad \mathrm{(E) \ 231 } </math> | ||
− | [[2000 AMC 12/Problem 6|Solution]] | + | [[2000 AMC 12 Problems/Problem 6|Solution]] |
== Problem 7 == | == Problem 7 == | ||
Line 54: | Line 54: | ||
<math> \mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 3 } \qquad \mathrm{(E) \ 4 } </math> | <math> \mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 3 } \qquad \mathrm{(E) \ 4 } </math> | ||
− | [[2000 AMC 12/Problem 7|Solution]] | + | [[2000 AMC 12 Problems/Problem 7|Solution]] |
== Problem 8 == | == Problem 8 == | ||
− | [[2000 AMC 12/Problem 8|Solution]] | + | [[2000 AMC 12 Problems/Problem 8|Solution]] |
== Problem 9 == | == Problem 9 == | ||
− | [[2000 AMC 12/Problem 9|Solution]] | + | [[2000 AMC 12 Problems/Problem 9|Solution]] |
== Problem 10 == | == Problem 10 == | ||
− | [[2000 AMC 12/Problem 10|Solution]] | + | [[2000 AMC 12 Problems/Problem 10|Solution]] |
== Problem 11 == | == Problem 11 == | ||
− | [[2000 AMC 12/Problem 11|Solution]] | + | [[2000 AMC 12 Problems/Problem 11|Solution]] |
== Problem 12 == | == Problem 12 == | ||
Line 76: | Line 76: | ||
<math> \mathrm{(A) \ 62 } \qquad \mathrm{(B) \ 72 } \qquad \mathrm{(C) \ 92 } \qquad \mathrm{(D) \ 102 } \qquad \mathrm{(E) \ 112 } </math> | <math> \mathrm{(A) \ 62 } \qquad \mathrm{(B) \ 72 } \qquad \mathrm{(C) \ 92 } \qquad \mathrm{(D) \ 102 } \qquad \mathrm{(E) \ 112 } </math> | ||
− | [[2000 AMC 12/Problem 12|Solution]] | + | [[2000 AMC 12 Problems/Problem 12|Solution]] |
== Problem 13 == | == Problem 13 == | ||
− | [[2000 AMC 12/Problem 13|Solution]] | + | [[2000 AMC 12 Problems/Problem 13|Solution]] |
== Problem 14 == | == Problem 14 == | ||
− | [[2000 AMC 12/Problem 14|Solution]] | + | [[2000 AMC 12 Problems/Problem 14|Solution]] |
== Problem 15 == | == Problem 15 == | ||
− | [[2000 AMC 12/Problem 15|Solution]] | + | [[2000 AMC 12 Problems/Problem 15|Solution]] |
== Problem 16 == | == Problem 16 == | ||
− | [[2000 AMC 12/Problem 16|Solution]] | + | [[2000 AMC 12 Problems/Problem 16|Solution]] |
== Problem 17 == | == Problem 17 == | ||
− | [[2000 AMC 12/Problem 17|Solution]] | + | [[2000 AMC 12 Problems/Problem 17|Solution]] |
== Problem 18 == | == Problem 18 == | ||
− | [[2000 AMC 12/Problem 18|Solution]] | + | [[2000 AMC 12 Problems/Problem 18|Solution]] |
== Problem 19 == | == Problem 19 == | ||
− | [[2000 AMC 12/Problem 19|Solution]] | + | [[2000 AMC 12 Problems/Problem 19|Solution]] |
== Problem 20 == | == Problem 20 == | ||
− | [[2000 AMC 12/Problem 20|Solution]] | + | [[2000 AMC 12 Problems/Problem 20|Solution]] |
== Problem 21 == | == Problem 21 == | ||
− | [[2000 AMC 12/Problem 21|Solution]] | + | [[2000 AMC 12 Problems/Problem 21|Solution]] |
== Problem 22 == | == Problem 22 == | ||
− | [[2000 AMC 12/Problem 22|Solution]] | + | [[2000 AMC 12 Problems/Problem 22|Solution]] |
== Problem 23 == | == Problem 23 == | ||
− | [[2000 AMC 12/Problem 23|Solution]] | + | [[2000 AMC 12 Problems/Problem 23|Solution]] |
== Problem 24 == | == Problem 24 == | ||
− | [[2000 AMC 12/Problem 24|Solution]] | + | [[2000 AMC 12 Problems/Problem 24|Solution]] |
== Problem 25 == | == Problem 25 == | ||
− | [[2000 AMC 12/Problem 25|Solution]] | + | [[2000 AMC 12 Problems/Problem 25|Solution]] |
== See also == | == See also == |
Revision as of 13:16, 16 November 2006
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 See also
Problem 1
In the year , the United States will host the International Mathematical Olympiad. Let and be distinct positive integers such that the product . What is the largest possible value of the sum ?
Problem 2
Problem 3
Each day, Jenny ate $20%$ (Error compiling LaTeX. Unknown error_msg) of the jellybeans that were in her jar at the beginning of that day. At the end of the second day, remained. How many jellybeans were in the jar originally?
Problem 4
The Fibonacci sequence starts with two 1s, and each term afterwards is the sum of its two predecessors. Which one of the ten digits is the last to appear in the units position of a number in the Fibonacci sequence?
Problem 5
If where then
Problem 6
Two different prime numbers between and are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained?
Problem 7
How many positive integers have the property that is a positive integer?
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Let A, M, and C be nonnegative integers such that . What is the maximum value of +++?