Difference between revisions of "2000 AMC 12 Problems/Problem 1"
m (2000 AMC 12/Problem 1 moved to 2000 AMC 12 Problems/Problem 1) |
m |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
In the year <math>2001</math>, the United States will host the [[International Mathematical Olympiad]]. Let <math> \displaystyle I,M,</math> and <math>\displaystyle O</math> be distinct [[positive integer]]s such that the product <math>I \cdot M \cdot O = 2001 </math>. What is the largest possible value of the sum <math>\displaystyle I + M + O</math>? | In the year <math>2001</math>, the United States will host the [[International Mathematical Olympiad]]. Let <math> \displaystyle I,M,</math> and <math>\displaystyle O</math> be distinct [[positive integer]]s such that the product <math>I \cdot M \cdot O = 2001 </math>. What is the largest possible value of the sum <math>\displaystyle I + M + O</math>? | ||
<math> \mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 } </math> | <math> \mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 } </math> | ||
− | |||
== Solution == | == Solution == | ||
Line 10: | Line 10: | ||
==See Also== | ==See Also== | ||
* [[2000 AMC 12]] | * [[2000 AMC 12]] | ||
− | * [[2000 AMC 12/Problem 2 | Next problem]] | + | * [[2000 AMC 12 Problems/Problem 2 | Next problem]] |
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] |
Revision as of 16:40, 13 November 2006
Problem
In the year , the United States will host the International Mathematical Olympiad. Let and be distinct positive integers such that the product . What is the largest possible value of the sum ?
Solution
The sum is the highest if two factors are the lowest! So, and .