TRAIN FOR THE AMC 10 WITH US
Thousands of top-scorers on the AMC 10 have used our Introduction series of textbooks and Art of Problem Solving Volume 1 for their training.
CHECK OUT THE BOOKS

Difference between revisions of "2020 AMC 10B Problems"

(Problem 19)
(Problem 18)
Line 105: Line 105:
 
==Problem 18==
 
==Problem 18==
  
These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.
+
An urn contains one red ball and one blue ball. A box of extra red and blue balls lie nearby. George performs the following operation four times: he draws a ball from the urn at random and then takes a ball of the same color from the box and returns those two matching balls to the urn. After the four iterations the urn contains six balls. What is the probability that the urn contains three balls of each color?
 +
 
 +
<math>\textbf{(A) } \frac16 \qquad \textbf{(B) }\frac15 \qquad \textbf{(C) } \frac14 \qquad \textbf{(D) } \frac13 \qquad \textbf{(E) } \frac12</math>
  
 
[[2020 AMC 10B Problems/Problem 18|Solution]]
 
[[2020 AMC 10B Problems/Problem 18|Solution]]

Revision as of 15:11, 7 February 2020

2020 AMC 10B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 2

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 3

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 4

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 5

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 6

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 7

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 8

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 9

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 10

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 11

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 12

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 13

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 14

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 15

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 16

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 17

These problems will not be available until the 2020 AMC 10B contest is released on Wednesday, February 5, 2020.

Solution

Problem 18

An urn contains one red ball and one blue ball. A box of extra red and blue balls lie nearby. George performs the following operation four times: he draws a ball from the urn at random and then takes a ball of the same color from the box and returns those two matching balls to the urn. After the four iterations the urn contains six balls. What is the probability that the urn contains three balls of each color?

$\textbf{(A) } \frac16 \qquad \textbf{(B) }\frac15 \qquad \textbf{(C) } \frac14 \qquad \textbf{(D) } \frac13 \qquad \textbf{(E) } \frac12$

Solution

Problem 19

In a certain card game, a player is dealt a hand of $10$ cards from a deck of $52$ distinct cards. The number of distinct (unordered) hands that can be dealt to the player can be written as $158A00A4AA0$. What is the digit $A$?

$\textbf{(A) } 2 \qquad\textbf{(B) } 3 \qquad\textbf{(C) } 4 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } 7$

Solution

Problem 20

Let $B$ be a right rectangular prism (box) with edges lengths $1,$ $3,$ and $4$, together with its interior. For real $r\geq0$, let $S(r)$ be the set of points in $3$-dimensional space that lie within a distance $r$ of some point $B$. The volume of $S(r)$ can be expressed as $ar^{3} + br^{2} + cr +d$, where $a,$ $b,$ $c,$ and $d$ are positive real numbers. What is $\frac{bc}{ad}?$

$\textbf{(A) } 6 \qquad\textbf{(B) } 19 \qquad\textbf{(C) } 24 \qquad\textbf{(D) } 26 \qquad\textbf{(E) } 38$

Solution

Problem 21

In square $ABCD$, points $E$ and $H$ lie on $\overline{AB}$ and $\overline{DA}$, respectively, so that $AE=AH.$ Points $F$ and $G$ lie on $\overline{BC}$ and $\overline{CD}$, respectively, and points $I$ and $J$ lie on $\overline{EH}$ so that $\overline{FI} \perp \overline{EH}$ and $\overline{GJ} \perp \overline{EH}$. See the figure below. Triangle $AEH$, quadrilateral $BFIE$, quadrilateral $DHJG$, and pentagon $FCGJI$ each has area $1.$ What is $FI^2$? [asy] real x=2sqrt(2); real y=2sqrt(16-8sqrt(2))-4+2sqrt(2); real z=2sqrt(8-4sqrt(2)); pair A, B, C, D, E, F, G, H, I, J; A = (0,0); B = (4,0); C = (4,4); D = (0,4); E = (x,0); F = (4,y); G = (y,4); H = (0,x); I = F + z * dir(225); J = G + z * dir(225);  draw(A--B--C--D--A); draw(H--E); draw(J--G^^F--I); draw(rightanglemark(G, J, I), linewidth(.5)); draw(rightanglemark(F, I, E), linewidth(.5));  dot("$A$", A, S); dot("$B$", B, S); dot("$C$", C, dir(90)); dot("$D$", D, dir(90)); dot("$E$", E, S); dot("$F$", F, dir(0)); dot("$G$", G, N); dot("$H$", H, W); dot("$I$", I, SW); dot("$J$", J, SW);  [/asy] $\textbf{(A) } \frac{7}{3} \qquad \textbf{(B) } 8-4\sqrt2 \qquad \textbf{(C) } 1+\sqrt2 \qquad \textbf{(D) } \frac{7}{4}\sqrt2 \qquad \textbf{(E) } 2\sqrt2$

Solution

Problem 22

What is the remainder when $2^{202} +202$ is divided by $2^{101}+2^{51}+1$?

$\textbf{(A) } 100 \qquad\textbf{(B) } 101 \qquad\textbf{(C) } 200 \qquad\textbf{(D) } 201 \qquad\textbf{(E) } 202$

Solution

Problem 23

Square $ABCD$ in the coordinate plane has vertices at the points $A(1,1), B(-1,1), C(-1,-1),$ and $D(1,-1).$ Consider the following four transformations: $L,$ a rotation of $90^{\circ}$ counterclockwise around the origin; $R,$ a rotation of $90^{\circ}$ clockwise around the origin; $H,$ a reflection across the $x$-axis; and $V,$ a reflection across the $y$-axis.

Each of these transformations maps the squares onto itself, but the positions of the labeled vertices will change. For example, applying $R$ and then $V$ would send the vertex $A$ at $(1,1)$ to $(-1,-1)$ and would send the vertex $B$ at $(-1,1)$ to itself. How many sequences of $20$ transformations chosen from $\{L, R, H, V\}$ will send all of the labeled vertices back to their original positions? (For example, $R, R, V, H$ is one sequence of $4$ transformations that will send the vertices back to their original positions.)

$\textbf{(A)}\ 2^{37} \qquad\textbf{(B)}\ 3\cdot 2^{36} \qquad\textbf{(C)}\  2^{38} \qquad\textbf{(D)}\ 3\cdot 2^{37} \qquad\textbf{(E)}\ 2^{39}$

Solution

Problem 24

How many positive integers $n$ satisfy\[\dfrac{n+1000}{70} = \lfloor \sqrt{n} \rfloor?\](Recall that $\lfloor x\rfloor$ is the greatest integer not exceeding $x$.)

$\textbf{(A) } 2 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 30 \qquad\textbf{(E) } 32$

Solution

Problem 25

Let $D(n)$ denote the number of ways of writing the positive integer $n$ as a product\[n = f_1\cdot f_2\cdots f_k,\]where $k\ge1$, the $f_i$ are integers strictly greater than $1$, and the order in which the factors are listed matters (that is, two representations that differ only in the order of the factors are counted as distinct). For example, the number $6$ can be written as $6$, $2\cdot 3$, and $3\cdot2$, so $D(6) = 3$. What is $D(96)$?

$\textbf{(A) } 112 \qquad\textbf{(B) } 128 \qquad\textbf{(C) } 144 \qquad\textbf{(D) } 172 \qquad\textbf{(E) } 184$

Solution

See also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
2020 AMC 10A Problems
Followed by
2021 AMC 10A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png