Difference between revisions of "2004 AMC 10A Problems/Problem 4"
m (→Solution) |
m (→Solution) |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
− | <math>|x-1|</math> is | + | <math>|x-1|</math> is the distance between <math>x</math> and <math>1</math>; <math>|x-2|</math> is the distance between <math>x</math> and <math>2</math>. |
− | Therefore, <math>x</math> is equidistant from <math>1</math> and <math>2</math>, so <math>x=\frac{1+2}2=\frac32\Rightarrow\mathrm{(D)}</math>. | + | Therefore, the given equation says <math>x</math> is [[equidistant]] from <math>1</math> and <math>2</math>, so <math>x=\frac{1+2}2=\frac32\Rightarrow\mathrm{(D)}</math>. |
+ | |||
+ | Alternatively, we can solve by casework (a method which should work for any similar problem involving [[absolute value]]s of [[real number]]s). If <math>x \leq 1</math> then <math>|x - 1| = 1-x</math> and <math>|x - 2| = 2 - x</math> so we must solve <math>1 - x = 2 - x</math> which has no solutions. Similarly, if <math>x \geq 2</math> then <math>|x - 1| = x - 1</math> and <math>|x - 2| = x - 2</math> so we must solve <math>x - 1 = x- 2</math>, which also has no solutions. Finally, if <math>1 \leq x \leq 2</math> then <math>|x - 1| = x - 1</math> and <math>|x - 2| = 2-x</math> so we must solve <math>x - 1 = 2 - x</math>, which has the unique solution <math>x = \frac32</math>. | ||
==See Also== | ==See Also== |
Revision as of 14:06, 12 November 2006
Problem
What is the value of if ?
Solution
is the distance between and ; is the distance between and .
Therefore, the given equation says is equidistant from and , so .
Alternatively, we can solve by casework (a method which should work for any similar problem involving absolute values of real numbers). If then and so we must solve which has no solutions. Similarly, if then and so we must solve , which also has no solutions. Finally, if then and so we must solve , which has the unique solution .