Difference between revisions of "2020 AMC 10A Problems/Problem 15"
m (→Solution) |
(→Solution) |
||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
The prime factorization of <math>12!</math> is <math>2^{10} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11</math>. | The prime factorization of <math>12!</math> is <math>2^{10} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11</math>. | ||
− | This yields a total of <math>11 | + | This yields a total of <math>11 \cdot 6 \cdot 3 \cdot 2 \cdot 2</math> divisors of <math>12!.</math> |
In order to produce a perfect square divisor, there must be an even exponent for each number in the prime factorization. Thus, there are 5 * 3 * 2 perfect squares. (For 2, you can have 0, 2, 4, 6, 8, or 10 2s, etc. Note that 7 and 11 can not be in the prime factorization of a perfect square because there is only one of each in 12!.) | In order to produce a perfect square divisor, there must be an even exponent for each number in the prime factorization. Thus, there are 5 * 3 * 2 perfect squares. (For 2, you can have 0, 2, 4, 6, 8, or 10 2s, etc. Note that 7 and 11 can not be in the prime factorization of a perfect square because there is only one of each in 12!.) | ||
The probability that the divisor chosen is a perfect square is 1/22. m + n = 23. | The probability that the divisor chosen is a perfect square is 1/22. m + n = 23. |
Revision as of 22:03, 31 January 2020
Problem
A positive integer divisor of is chosen at random. The probability that the divisor chosen is a perfect square can be expressed as , where and are relatively prime positive integers. What is ?
Solution
The prime factorization of is . This yields a total of divisors of In order to produce a perfect square divisor, there must be an even exponent for each number in the prime factorization. Thus, there are 5 * 3 * 2 perfect squares. (For 2, you can have 0, 2, 4, 6, 8, or 10 2s, etc. Note that 7 and 11 can not be in the prime factorization of a perfect square because there is only one of each in 12!.) The probability that the divisor chosen is a perfect square is 1/22. m + n = 23.
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.