Difference between revisions of "2020 AMC 10A Problems/Problem 20"
(→Problem) |
(→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Quadrilateral <math>ABCD</math> satisfies <math>\angle ABC = \angle ACD = 90^{\circ}, AC=20,</math> and <math>CD=30.</math> Diagonals <math>\overline{AC}</math> and | + | Quadrilateral <math>ABCD</math> satisfies <math>\angle ABC = \angle ACD = 90^{\circ}, AC=20,</math> and <math>CD=30.</math> Diagonals <math>\overline{AC}</math> and <math>\overline{BD}</math> intersect at point <math>E,</math> and <math>AE=5.</math> What is the area of quadrilateral <math>ABCD?</math> |
+ | |||
+ | <math>\textbf{(A) } 330 \qquad \textbf{(B) } 340 \qquad \textbf{(C) } 350 \qquad \textbf{(D) } 360 \qquad \textbf{(E) } 370</math> | ||
== Solution == | == Solution == |
Revision as of 21:38, 31 January 2020
Problem
Quadrilateral satisfies and Diagonals and intersect at point and What is the area of quadrilateral
Solution
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.