Difference between revisions of "1978 AHSME Problems/Problem 6"
(Created blank page) |
|||
Line 1: | Line 1: | ||
+ | == Problem 6 == | ||
+ | The number of distinct pairs <math>(x,y)</math> of real numbers satisfying both of the following equations: | ||
+ | |||
+ | <cmath>x=x^2+y^2 \ \ y=2xy</cmath> | ||
+ | is | ||
+ | |||
+ | <math>\textbf{(A) }0\qquad | ||
+ | \textbf{(B) }1\qquad | ||
+ | \textbf{(C) }2\qquad | ||
+ | \textbf{(D) }3\qquad | ||
+ | \textbf{(E) }4 </math> | ||
+ | |||
+ | If <math>x=x^2+y^2</math> and <math>y=2xy</math>, then we can break this into two cases. | ||
+ | |||
+ | Case 1: <math>y = 0</math> | ||
+ | |||
+ | If <math>y = 0</math>, then <math>x = x^2</math> and <math>0 = 0</math> | ||
+ | |||
+ | Therefore, <math>x = 0</math> or <math>x = 1</math> | ||
+ | |||
+ | This yields 2 solutions | ||
+ | |||
+ | Case 2: <math>x = \frac{1}{2}</math> | ||
+ | |||
+ | If <math>x = \frac{1}{2}</math>, this means that <math>y = y</math>, and <math>\frac{1}{2} = \frac{1}{4} + y^2</math>. | ||
+ | |||
+ | Because y can be negative or positive, this yields <math>y = \frac{1}{2}</math> or <math>y = -\frac{1}{2}</math> | ||
+ | |||
+ | This yields another 2 solutions. | ||
+ | |||
+ | <math>2+2 = \boxed{\textbf{(E) 4}}</math> |
Revision as of 20:35, 21 January 2020
Problem 6
The number of distinct pairs of real numbers satisfying both of the following equations:
is
If and , then we can break this into two cases.
Case 1:
If , then and
Therefore, or
This yields 2 solutions
Case 2:
If , this means that , and .
Because y can be negative or positive, this yields or
This yields another 2 solutions.