Difference between revisions of "2011 AMC 12B Problems/Problem 24"

m (Solution)
m (Replaced an 'or' with an implies sign to make the cases more clear.)
Line 15: Line 15:
 
<math>P(z) = \left(z^4 - 1\right)\left(z^4 + \left(4\sqrt{3} + 7\right)\right)</math>
 
<math>P(z) = \left(z^4 - 1\right)\left(z^4 + \left(4\sqrt{3} + 7\right)\right)</math>
  
So <math>z^4 = 1</math> or <math>z =  e^{i\frac{n\pi}{2}}</math>
+
So <math>z^4 = 1 \implies z =  e^{i\frac{n\pi}{2}}</math>
  
 
or <math>z^4 = - \left(4\sqrt{3} + 7\right)</math>
 
or <math>z^4 = - \left(4\sqrt{3} + 7\right)</math>

Revision as of 19:36, 27 December 2019

Problem

Let $P(z) = z^8 + \left(4\sqrt{3} + 6\right)z^4 - \left(4\sqrt{3} + 7\right)$. What is the minimum perimeter among all the $8$-sided polygons in the complex plane whose vertices are precisely the zeros of $P(z)$?

$\textbf{(A)}\ 4\sqrt{3} + 4 \qquad \textbf{(B)}\ 8\sqrt{2} \qquad \textbf{(C)}\  3\sqrt{2} + 3\sqrt{6}$

$\textbf{(D)}\  4\sqrt{2} + 4\sqrt{3} \qquad \textbf{(E)}\  4\sqrt{3} + 6$

Solution

Answer: (B)

First of all, we need to find all $z$ such that $P(z) = 0$

$P(z) = \left(z^4 - 1\right)\left(z^4 + \left(4\sqrt{3} + 7\right)\right)$

So $z^4 = 1 \implies z =  e^{i\frac{n\pi}{2}}$

or $z^4 = - \left(4\sqrt{3} + 7\right)$

$z^2 = \pm i \sqrt{4\sqrt{3} + 7} = e^{i\frac{(2n+1)\pi}{2}} \left(\sqrt{3} + 2\right)$

$z = e^{i\frac{(2n+1)\pi}{4}} \sqrt{\sqrt{3} + 2} = e^{i\frac{(2n+1)\pi}{4}} \left(\frac{\sqrt{3}}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right)$


Now we have a solution at $\frac{n\pi}{4}$ if we look at them in polar coordinate, further more, the 8-gon is symmetric (it is an regular octagon) . So we only need to find the side length of one and multiply by $8$.

So answer $= 8 \times$ distance from $1$ to $\left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right)\left(1 + i\right)$

Side length $= \sqrt{\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right)^2} = \sqrt{2\left(\frac{3}{4} + \frac{1}{4}\right)} = \sqrt{2}$

Hence, answer is $8\sqrt{2}$.


Easier method: Use the law of cosines. We make $a$ the distance. Now, since the angle does not change the distance from the origin, we can just use the distance. $a^2 = (\frac{\sqrt{3}}{\sqrt{2}} + \frac{1}{\sqrt{2}})^2 + 1^2 -2 \times \Big( \frac{\sqrt{3}}{\sqrt{2}} + \frac{1}{\sqrt{2}} \Big)\times 1 \times \cos \frac{\pi}{4}$, which simplifies to $a^2= 2 + \sqrt3 +1 - 1 - \sqrt3$, or $a^2=2$, or $a=\sqrt2$. Multiply the answer by 8 to get $\boxed{ (B) 8\sqrt2}$

See also

2011 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png