Difference between revisions of "2002 AMC 10B Problems/Problem 1"

(Solution)
(Solution 2)
Line 12: Line 12:
 
== Solution 2==
 
== Solution 2==
 
<math>\frac{2^{2001}\cdot3^{2003}}{6^{2002}}=\frac{2^{2001}\cdot 2\cdot 3^{2002}\cdot 3}{6^{2002}\cdot 2}=\frac{2^{2002} \cdot 3^{2002} \cdot 3}{6^{2002}\cdot 2}=\frac{6^{2002}\cdot 3}{6^{2002}\cdot 2}=\frac{3}{2}</math> or <math>\mathrm{ (E) \ }</math>
 
<math>\frac{2^{2001}\cdot3^{2003}}{6^{2002}}=\frac{2^{2001}\cdot 2\cdot 3^{2002}\cdot 3}{6^{2002}\cdot 2}=\frac{2^{2002} \cdot 3^{2002} \cdot 3}{6^{2002}\cdot 2}=\frac{6^{2002}\cdot 3}{6^{2002}\cdot 2}=\frac{3}{2}</math> or <math>\mathrm{ (E) \ }</math>
 +
~by mathwiz0
  
 
==See Also==
 
==See Also==

Revision as of 12:41, 21 December 2019

Problem

The ratio $\frac{2^{2001}\cdot3^{2003}}{6^{2002}}$ is:

$\mathrm{(A) \ } 1/6\qquad \mathrm{(B) \ } 1/3\qquad \mathrm{(C) \ } 1/2\qquad \mathrm{(D) \ } 2/3\qquad \mathrm{(E) \ } 3/2$

Solution 1

$\frac{2^{2001}\cdot3^{2003}}{6^{2002}}=\frac{6^{2001}\cdot 3^2}{6^{2002}}=\frac{9}{6}=\frac{3}{2}$ or $\mathrm{ (E) \ }$


Solution 2

$\frac{2^{2001}\cdot3^{2003}}{6^{2002}}=\frac{2^{2001}\cdot 2\cdot 3^{2002}\cdot 3}{6^{2002}\cdot 2}=\frac{2^{2002} \cdot 3^{2002} \cdot 3}{6^{2002}\cdot 2}=\frac{6^{2002}\cdot 3}{6^{2002}\cdot 2}=\frac{3}{2}$ or $\mathrm{ (E) \ }$ ~by mathwiz0

See Also

2002 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png