Difference between revisions of "2017 AMC 12B Problems/Problem 23"
(→Solution) |
m (→Solution) |
||
Line 7: | Line 7: | ||
First, we can define <math>f(x) = a(x-2)(x-3)(x-4) +x^2</math>, which contains points <math>A</math>, <math>B</math>, and <math>C</math>. Now we find that lines <math>AB</math>, <math>AC</math>, and <math>BC</math> are defined by the equations <math>y = 5x - 6</math>, <math>y= 6x-8</math>, and <math>y=7x-12</math> respectively. Since we want to find the <math>x</math>-coordinates of the intersections of these lines and <math>f(x)</math>, we set each of them to <math>f(x)</math>, and synthetically divide by the solutions we already know exist (eg. if we were looking at line <math>AB</math>, we would synthetically divide by the solutions <math>x=2</math> and <math>x=3</math>, because we already know <math>AB</math> intersects the graph at <math>A</math> and <math>B</math>, which have <math>x</math>-coordinates of <math>2</math> and <math>3</math>). After completing this process on all three lines, we get that the <math>x</math>-coordinates of <math>D</math>, <math>E</math>, and <math>F</math> are <math>\frac{4a-1}{a}</math>, <math>\frac{3a-1}{a}</math>, and <math>\frac{2a-1}{a}</math> respectively. Adding these together, we get <math>\frac{9a-3}{a} = 24</math> which gives us <math>a = -\frac{1}{5}</math>. Substituting this back into the original equation, we get <math>f(x) = -\frac{1}{5}(x-2)(x-3)(x-4) + x^2</math>, and <math>f(0) = -\frac{1}{5}(-2)(-3)(-4) + 0 = \boxed{\textbf{(D)}\frac{24}{5}}</math> | First, we can define <math>f(x) = a(x-2)(x-3)(x-4) +x^2</math>, which contains points <math>A</math>, <math>B</math>, and <math>C</math>. Now we find that lines <math>AB</math>, <math>AC</math>, and <math>BC</math> are defined by the equations <math>y = 5x - 6</math>, <math>y= 6x-8</math>, and <math>y=7x-12</math> respectively. Since we want to find the <math>x</math>-coordinates of the intersections of these lines and <math>f(x)</math>, we set each of them to <math>f(x)</math>, and synthetically divide by the solutions we already know exist (eg. if we were looking at line <math>AB</math>, we would synthetically divide by the solutions <math>x=2</math> and <math>x=3</math>, because we already know <math>AB</math> intersects the graph at <math>A</math> and <math>B</math>, which have <math>x</math>-coordinates of <math>2</math> and <math>3</math>). After completing this process on all three lines, we get that the <math>x</math>-coordinates of <math>D</math>, <math>E</math>, and <math>F</math> are <math>\frac{4a-1}{a}</math>, <math>\frac{3a-1}{a}</math>, and <math>\frac{2a-1}{a}</math> respectively. Adding these together, we get <math>\frac{9a-3}{a} = 24</math> which gives us <math>a = -\frac{1}{5}</math>. Substituting this back into the original equation, we get <math>f(x) = -\frac{1}{5}(x-2)(x-3)(x-4) + x^2</math>, and <math>f(0) = -\frac{1}{5}(-2)(-3)(-4) + 0 = \boxed{\textbf{(D)}\frac{24}{5}}</math> | ||
− | Solution by | + | Solution by vedadehhc |
− | |||
==Solution 2== | ==Solution 2== | ||
No need to find the equations for the lines, really. First of all, <math>f(x) = a(x-2)(x-3)(x-4) +x^2</math>. Let's say the line <math>AB</math> is <math>y=bx+c</math>, and <math>x_1</math> is the <math>x</math> coordinate of the third intersection, then <math>2</math>, <math>3</math>, <math>x_1</math> are the three roots of <math>f(x) - bx-c</math>. Apparently the value of <math>b</math> and <math>c</math> have no effect on the sum of the 3 roots, because the coefficient of the <math>x^2</math> term is always <math>9a-1</math>. So we have, | No need to find the equations for the lines, really. First of all, <math>f(x) = a(x-2)(x-3)(x-4) +x^2</math>. Let's say the line <math>AB</math> is <math>y=bx+c</math>, and <math>x_1</math> is the <math>x</math> coordinate of the third intersection, then <math>2</math>, <math>3</math>, <math>x_1</math> are the three roots of <math>f(x) - bx-c</math>. Apparently the value of <math>b</math> and <math>c</math> have no effect on the sum of the 3 roots, because the coefficient of the <math>x^2</math> term is always <math>9a-1</math>. So we have, |
Revision as of 18:52, 1 December 2019
Contents
Problem 23
The graph of , where is a polynomial of degree , contains points , , and . Lines , , and intersect the graph again at points , , and , respectively, and the sum of the -coordinates of , , and is 24. What is ?
Solution
First, we can define , which contains points , , and . Now we find that lines , , and are defined by the equations , , and respectively. Since we want to find the -coordinates of the intersections of these lines and , we set each of them to , and synthetically divide by the solutions we already know exist (eg. if we were looking at line , we would synthetically divide by the solutions and , because we already know intersects the graph at and , which have -coordinates of and ). After completing this process on all three lines, we get that the -coordinates of , , and are , , and respectively. Adding these together, we get which gives us . Substituting this back into the original equation, we get , and
Solution by vedadehhc
Solution 2
No need to find the equations for the lines, really. First of all, . Let's say the line is , and is the coordinate of the third intersection, then , , are the three roots of . Apparently the value of and have no effect on the sum of the 3 roots, because the coefficient of the term is always . So we have, Add them up we have Solve it, we get . .
- Mathdummy
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.