Difference between revisions of "Simon's Favorite Factoring Trick"
K775142123 (talk | contribs) m (→Amazing Practice Problems) |
m (→Awesome Practice Problems) |
||
Line 11: | Line 11: | ||
This factorization frequently shows up on contest problems, especially those heavy on algebraic manipulation. Usually <math>x</math> and <math>y</math> are variables and <math>j,k</math> are known constants. Also, it is typically necessary to add the <math>jk</math> term to both sides to perform the factorization. | This factorization frequently shows up on contest problems, especially those heavy on algebraic manipulation. Usually <math>x</math> and <math>y</math> are variables and <math>j,k</math> are known constants. Also, it is typically necessary to add the <math>jk</math> term to both sides to perform the factorization. | ||
− | == | + | == Fun Practice Problems == |
===Introductory=== | ===Introductory=== | ||
*Two different [[prime number]]s between <math>4</math> and <math>18</math> are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained? | *Two different [[prime number]]s between <math>4</math> and <math>18</math> are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained? |
Revision as of 14:04, 27 November 2019
Contents
About
Dr. Simon's Favorite Factoring Trick (abbreviated SFFT) is a special factorization first popularized by AoPS user Simon Rubinstein-Salzedo.
The General Statement
The general statement of SFFT is: . Two special common cases are: and .
The act of adding to in order to be able to factor it could be called "completing the rectangle" in analogy to the more familiar "completing the square."
Applications
This factorization frequently shows up on contest problems, especially those heavy on algebraic manipulation. Usually and are variables and are known constants. Also, it is typically necessary to add the term to both sides to perform the factorization.
Fun Practice Problems
Introductory
- Two different prime numbers between and are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained?
(Source)
Intermediate
- are integers such that . Find .
(Source)
Olympiad
- The integer is positive. There are exactly 2005 ordered pairs of positive integers satisfying:
Prove that is a perfect square. (British Mathematical Olympiad Round 2, 2005)
Enjoy the problems!