Difference between revisions of "2011 AMC 10B Problems/Problem 16"
m (Typo) |
(→Solution) |
||
Line 68: | Line 68: | ||
<cmath> \frac{2}{4+4\sqrt{2}} = \frac{1}{2+2\sqrt{2}} \times \frac{2-2\sqrt{2}}{2-2\sqrt{2}} = \frac{2-2\sqrt{2}}{-4} = \boxed{\textbf{(A)} \frac{\sqrt{2}-1}{2}}</cmath> | <cmath> \frac{2}{4+4\sqrt{2}} = \frac{1}{2+2\sqrt{2}} \times \frac{2-2\sqrt{2}}{2-2\sqrt{2}} = \frac{2-2\sqrt{2}}{-4} = \boxed{\textbf{(A)} \frac{\sqrt{2}-1}{2}}</cmath> | ||
+ | |||
+ | == See Also== | ||
+ | |||
+ | {{AMC10 box|year=2011|ab=B|num-b=16|num-a=18}} | ||
+ | {{MAA Notice}} |
Revision as of 14:52, 26 November 2019
Contents
See Also
Problem
A dart board is a regular octagon divided into regions as shown. Suppose that a dart thrown at the board is equally likely to land anywhere on the board. What is the probability that the dart lands within the center square?
Solution
If the side lengths of the dart board and the side lengths of the center square are all then the side length of the legs of the triangles are .
Use Geometric probability by putting the area of the desired region over the area of the entire region.
See Also
2011 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.