Difference between revisions of "2017 AMC 10B Problems/Problem 22"

(Coordinate Geo)
(Coordinate Geo)
Line 60: Line 60:
 
plugging in <math>\frac{5x}{7}</math> for y we get <math>x(74x-196)=0</math> so <math>x=\frac{98}{37}</math>, that means <math>y = \frac{98}{37} \cdot \frac{5}{7} = 70/37</math>
 
plugging in <math>\frac{5x}{7}</math> for y we get <math>x(74x-196)=0</math> so <math>x=\frac{98}{37}</math>, that means <math>y = \frac{98}{37} \cdot \frac{5}{7} = 70/37</math>
  
the height is <math>\frac{70}{37}</math> and the base is <math>4</math>, so the area is <math>\frac{140}{37}</math>
+
the height is <math>\frac{70}{37}</math> and the base is <math>4</math>, so the area is <math>\boxed{\textbf{(D) } \frac{140}{37}}</math>
  
 
-harsha12345
 
-harsha12345

Revision as of 12:55, 26 November 2019

Problem

The diameter $\overline{AB}$ of a circle of radius $2$ is extended to a point $D$ outside the circle so that $BD=3$. Point $E$ is chosen so that $ED=5$ and line $ED$ is perpendicular to line $AD$. Segment $\overline{AE}$ intersects the circle at a point $C$ between $A$ and $E$. What is the area of $\triangle ABC$?

$\textbf{(A)}\ \frac{120}{37}\qquad\textbf{(B)}\ \frac{140}{39}\qquad\textbf{(C)}\ \frac{145}{39}\qquad\textbf{(D)}\ \frac{140}{37}\qquad\textbf{(E)}\ \frac{120}{31}$

Solutions

[asy] size(10cm); pair A, B, C, D, E, O; A = (-2,0); B = (2,0); C = (2*cos(1.24),2*sin(1.24)); D = (5,0); E = (5,5); O = (A+B)/2; dot(A); dot(B); dot(C); dot(D); dot(E); dot(O); draw(Circle((A+B)/2,2)); draw(A--D--E--C--A); draw(C--B); draw(rightanglemark(A,C,B,5)); draw(rightanglemark(A,D,E,5)); label("$A$",A,W); label("$B$",B,SE); label("$D$",D,SE); label("$E$",E,NE); label("$C$",C,N); label("$2$",(O+B)/2,S); label("$3$",(B+D)/2,S); label("$5$",(D+E)/2,NE); [/asy]

Solution 1

Notice that $ADE$ and $ABC$ are right triangles. Then $AE = \sqrt{7^2+5^2} = \sqrt{74}$. $\sin{DAE} = \frac{5}{\sqrt{74}} = \sin{BAE} = \sin{BAC} = \frac{BC}{4}$, so $BC = \frac{20}{\sqrt{74}}$. We also find that $AC = \frac{28}{\sqrt{74}}$, and thus the area of $ABC$ is $\frac{\frac{20}{\sqrt{74}}\cdot\frac{28}{\sqrt{74}}}{2} = \frac{\frac{560}{74}}{2} = \boxed{\textbf{(D) } \frac{140}{37}}$.

Solution 2

We note that $\triangle ACB \sim \triangle ADE$ by $AA$ similarity. Also, since the area of $\triangle ADE = \frac{7 \cdot 5}2 = \frac{35}2$ and $AE = \sqrt{74}$, $\frac{[ABC]}{[ADE]} = \frac{[ABC]}{\frac{35}2} = \left(\frac{4}{\sqrt{74}}\right)^2$, so the area of $\triangle ABC = \boxed{\textbf{(D) } \frac{140}{37}}$.

Solution 3

As stated before, note that $\triangle ACB ~ \triangle ADE$. By similarity, we note that $\frac{\overline{AC}}{\overline{BC}}$ is equivalent to $\frac{7}{5}$. We set $\overline{AC}$ to $7x$ and $\overline{BC}$ to $5x$. By the Pythagorean Theorem, $(7x)^2+(5x)^2 = 4^2$. Combining, $49x^2+25x^2=16$. We can add and divide to get $x^2=\frac{8}{37}$. We square root and rearrange to get $x=\frac{2\sqrt{74}}{37}$. We know that the legs of the triangle are $7x$ and $5x$. Mulitplying $x$ by $7$ and $5$ eventually gives us $\frac {14\sqrt{74}}{37}$ $\frac {10\sqrt{74}}{37}$. We divide this by 2, since $\frac{1}{2}bh$ is the formula for a triangle. This gives us $\boxed{\textbf{(D) } \frac{140}{37}}$.

Solution 4

Let's call the center of the circle that segment $AB$ is the diameter of, $O$. Note that $\triangle ODE$ is an isosceles right triangle. Solving for side $OE$, using the Pythagorean theorem, we find it to be $5\sqrt{2}$. Calling the point where segment $OE$ intersects circle $O$, the point $I$, segment $IE$ would be $5\sqrt{2}-2$. Also, noting that $\triangle ADE$ is a right triangle, we solve for side $AE$, using the Pythagorean Theorem, and get $\sqrt{74}$. Using Power of Point on point $E$, we can solve for $CE$. We can subtract $CE$ from $AE$ to find $AC$ and then solve for $CB$ using Pythagorean theorem once more.

$(AE)(CE)$ = (Diameter of circle $O$ + $IE$)$(IE)$ $\rightarrow$ ${\sqrt{74}}(CE)$ = $(5\sqrt{2}+2)(5\sqrt{2}-2)$ $\Rightarrow$ $CE$ = $\frac{23\sqrt{74}}{37}$

$AC = AE - CE$ $\rightarrow$ $AC$ = ${\sqrt74}$ - $\frac{23\sqrt{74}}{37}$ $\Rightarrow$ $AC$ = $\frac{14\sqrt{74}}{37}$

Now to solve for $CB$:

$AB^2$ - $AC^2$ = $CB^2$ $\rightarrow$ $4^2$ + $\frac{14\sqrt{74}}{37}^2$ = $CB^2$ $\Rightarrow$ $CB$ = $\frac{10\sqrt{74}}{37}$

Note that $\triangle ABC$ is a right triangle because the hypotenuse is the diameter of the circle. Solving for area using the bases $AC$ and $BC$, we get the area of triangle $ABC$ to be $\boxed{\textbf{(D) } \frac{140}{37}}$.

Coordinate Geo

drawing the picture, we realize that the equation for the line from A to E is $y=\frac{5x}{7}$, and the equation for the circle is $(x-2)^2+y^2=4$ plugging in $\frac{5x}{7}$ for y we get $x(74x-196)=0$ so $x=\frac{98}{37}$, that means $y = \frac{98}{37} \cdot \frac{5}{7} = 70/37$

the height is $\frac{70}{37}$ and the base is $4$, so the area is $\boxed{\textbf{(D) } \frac{140}{37}}$

-harsha12345

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png