Difference between revisions of "2004 AMC 10A Problems/Problem 4"

(added category)
m (fixed typo in answer choice)
Line 2: Line 2:
 
What is the value of <math>x</math> if <math>|x-1|=|x-2|</math>?
 
What is the value of <math>x</math> if <math>|x-1|=|x-2|</math>?
  
<math> \mathrm{(A) \ } -\frac12 \qquad \mathrm{(B) \ } \frac12 \qquad \mathrm{(C) \ } 1 \qquad \mathrm{(D) \ } \frac32 {2}\qquad \mathrm{(E) \ } 2 </math>
+
<math> \mathrm{(A) \ } -\frac12 \qquad \mathrm{(B) \ } \frac12 \qquad \mathrm{(C) \ } 1 \qquad \mathrm{(D) \ } \frac32 \qquad \mathrm{(E) \ } 2 </math>
  
 
==Solution==
 
==Solution==

Revision as of 11:08, 5 November 2006

Problem

What is the value of $x$ if $|x-1|=|x-2|$?

$\mathrm{(A) \ } -\frac12 \qquad \mathrm{(B) \ } \frac12 \qquad \mathrm{(C) \ } 1 \qquad \mathrm{(D) \ } \frac32 \qquad \mathrm{(E) \ } 2$

Solution

$|x-1|$ is the same thing as saying the distance between $x$ and $1$; $|x-2|$ is the same thing as saying the distance between $x$ and $2$.

Therefore, $x$ is the same distance from $1$ and $2$, so $x=\frac{1+2}2=\frac32\Rightarrow\mathrm{(D)}$.

See Also