Difference between revisions of "Geometric sequence"
m |
|||
Line 1: | Line 1: | ||
A '''geometric sequence''' is a [[sequence]] of numbers in which each term is a fixed [[multiple]] of the previous term. For example: 1, 2, 4, 8, 16, 32, ... is a geometric sequence because each term is twice the previous term. In this case, 2 is called the ''common ratio'' of the sequence. More formally, a geometric sequence may be defined [[recursion|recursively]] by: | A '''geometric sequence''' is a [[sequence]] of numbers in which each term is a fixed [[multiple]] of the previous term. For example: 1, 2, 4, 8, 16, 32, ... is a geometric sequence because each term is twice the previous term. In this case, 2 is called the ''common ratio'' of the sequence. More formally, a geometric sequence may be defined [[recursion|recursively]] by: | ||
− | <center><math>a_n = r\cdot a_{n-1}, n | + | <center><math>a_n = r\cdot a_{n-1}, n > 1</math></center> |
− | with a fixed <math> | + | with a fixed first term <math>a_1</math> and common ratio <math>r</math>. Using this definition, the <math>n</math>th term has the closed-form: |
− | <center><math>\displaystyle a_n = | + | <center><math>\displaystyle a_n = a_1\cdot r^{n-1}</math></center> |
==Summing a Geometric Sequence== | ==Summing a Geometric Sequence== | ||
Line 11: | Line 11: | ||
The sum of the first <math>n</math> terms of a geometric sequence is given by | The sum of the first <math>n</math> terms of a geometric sequence is given by | ||
− | <center><math>S_n = | + | <center><math>S_n = a_1 + a_2 + \ldots + a_n = a_1\cdot\frac{r^n-1}{r-1}</math></center> |
− | where <math> | + | where <math>a_1</math> is the first term in the sequence, and <math>r</math> is the common ratio. |
==Infinite Geometric Sequences== | ==Infinite Geometric Sequences== | ||
Line 21: | Line 21: | ||
For instance, the series <math>1 + \frac12 + \frac14 + \frac18 + \cdots</math>, sums to 2. The general formula for the sum of such a sequence is: | For instance, the series <math>1 + \frac12 + \frac14 + \frac18 + \cdots</math>, sums to 2. The general formula for the sum of such a sequence is: | ||
− | <center><math>S = \frac{ | + | <center><math>S = \frac{a_1}{1-r}</math>.</center> <br><br> |
− | Where <math> | + | Where <math>a_1</math> is the first term in the sequence, and <math>r</math> is the common ratio. |
"Proof": Let the sequence be | "Proof": Let the sequence be | ||
− | <center><math>S= | + | <center><math>S=a_1+a_1r+a_1r^2+a_1r^3+\cdots</math></center> |
Multiplying by <math>r</math> yields, | Multiplying by <math>r</math> yields, | ||
− | <center><math>S \cdot r= | + | <center><math>S \cdot r=a_1r+a_1r^2+a_1r^3+\cdots</math></center> |
We subtract these two equations to obtain: | We subtract these two equations to obtain: | ||
− | <center><math> S- | + | <center><math> S-Sr=a_1</math></center> |
There is only one term on the RHS because the rest of the terms cancel out after subtraction. Finally, we can factor and divide to get | There is only one term on the RHS because the rest of the terms cancel out after subtraction. Finally, we can factor and divide to get | ||
− | <center><math>\displaystyle S(1-r)= | + | <center><math>\displaystyle S(1-r)=a_1</math></center> |
thus, | thus, | ||
− | <center><math>S=\frac{ | + | <center><math>S=\frac{a_1}{1-r}</math></center> |
This method of multiplying the sequence and subtracting equations, called telescoping, is a frequently used method to evaluate infinite sequences. In fact, the same method can be used to calculate the sum of a finite geometric sequence (given above). | This method of multiplying the sequence and subtracting equations, called telescoping, is a frequently used method to evaluate infinite sequences. In fact, the same method can be used to calculate the sum of a finite geometric sequence (given above). |
Revision as of 21:03, 4 November 2006
A geometric sequence is a sequence of numbers in which each term is a fixed multiple of the previous term. For example: 1, 2, 4, 8, 16, 32, ... is a geometric sequence because each term is twice the previous term. In this case, 2 is called the common ratio of the sequence. More formally, a geometric sequence may be defined recursively by:
with a fixed first term and common ratio . Using this definition, the th term has the closed-form:
Summing a Geometric Sequence
The sum of the first terms of a geometric sequence is given by
where is the first term in the sequence, and is the common ratio.
Infinite Geometric Sequences
An infinite geometric sequence is a geometric sequence with an infinite number of terms. If the common ratio is small, the terms will approach 0 and the sum of the terms will approach a fixed limit. In this case, "small" means . We say that the sum of the terms of this sequence is a convergent sum.
For instance, the series , sums to 2. The general formula for the sum of such a sequence is:
Where is the first term in the sequence, and is the common ratio.
"Proof": Let the sequence be
Multiplying by yields,
We subtract these two equations to obtain:
There is only one term on the RHS because the rest of the terms cancel out after subtraction. Finally, we can factor and divide to get
thus,
This method of multiplying the sequence and subtracting equations, called telescoping, is a frequently used method to evaluate infinite sequences. In fact, the same method can be used to calculate the sum of a finite geometric sequence (given above).
One common instance of summing infinite geometric sequences is the decimal expansion of most rational numbers. For instance, has first term and common ratio , so the infinite sum has value , just as we would have expected.