Difference between revisions of "2018 JBMO Problems"

(Created page with "Problems/Problem 4 Let <math>\triangle ABC</math> and <math>A'</math>,<math>B'</math>,<math>C'</math> the symmetrics of vertex over opposite sides.The intersection of the circ...")
 
Line 1: Line 1:
Problems/Problem 4
+
=='''Problems/Problem 4'''==
 
Let <math>\triangle ABC</math> and <math>A'</math>,<math>B'</math>,<math>C'</math> the symmetrics of vertex over opposite sides.The intersection of the circumcircles of <math>\triangle ABB'</math> and <math>\triangle ACC'</math> is <math>A_1</math>.<math>B_1</math> and <math>C_1</math> are defined similarly.Prove that lines <math>AA_1</math>,<math>BB_1</math> and <math>CC_1</math> are concurent.
 
Let <math>\triangle ABC</math> and <math>A'</math>,<math>B'</math>,<math>C'</math> the symmetrics of vertex over opposite sides.The intersection of the circumcircles of <math>\triangle ABB'</math> and <math>\triangle ACC'</math> is <math>A_1</math>.<math>B_1</math> and <math>C_1</math> are defined similarly.Prove that lines <math>AA_1</math>,<math>BB_1</math> and <math>CC_1</math> are concurent.

Revision as of 06:12, 1 August 2019

Problems/Problem 4

Let $\triangle ABC$ and $A'$,$B'$,$C'$ the symmetrics of vertex over opposite sides.The intersection of the circumcircles of $\triangle ABB'$ and $\triangle ACC'$ is $A_1$.$B_1$ and $C_1$ are defined similarly.Prove that lines $AA_1$,$BB_1$ and $CC_1$ are concurent.