Difference between revisions of "1967 AHSME Problems/Problem 34"
(→Solution) |
(→Solution) |
||
Line 9: | Line 9: | ||
== Solution == | == Solution == | ||
− | WLOG, let's assume that <math>\triangle ABC</math> is equilateral. Therefore, <math>[ABC]=\frac{(1+n)^2\sqrt3}{4}</math> and <math>[DBE]=[ADF]=[EFC]=n \cdot sin(60)/2</math>. Then <math>[DEF]=\frac{(n^2-n+1)\sqrt3}{4}</math>. Finding the ratio yields <math>\fbox{A}</math> | + | WLOG, let's assume that <math>\triangle ABC</math> is equilateral. Therefore, <math>[ABC]=\frac{(1+n)^2\sqrt3}{4}</math> and <math>[DBE]=[ADF]=[EFC]=n \cdot sin(60)/2</math>. Then <math>[DEF]=\frac{(n^2-n+1)\sqrt3}{4}</math>. Finding the ratio yields <math>\fbox{A}</math>. -Dark_Lord |
== See also == | == See also == |
Revision as of 18:16, 30 May 2019
Problem
Points , , are taken respectively on sides , , and of triangle so that . The ratio of the area of triangle to that of triangle is:
Solution
WLOG, let's assume that is equilateral. Therefore, and . Then . Finding the ratio yields . -Dark_Lord
See also
1967 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 33 |
Followed by Problem 35 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.