Difference between revisions of "2019 USAMO Problems/Problem 1"

(Created page with "==Problem 1== Let <math>\mathbb{N}</math> be the set of positive integers. A function <math>f:\mathbb{N}\to\mathbb{N}</math> satisfies the equation <cmath>\underbrace{f(f(\ldo...")
 
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
 +
 +
{{MAA Notice}}
 +
 +
==See also==
 +
{{USAMO newbox|year=2019|beforetext=|before=First Problem|num-a=2}}

Revision as of 23:02, 19 April 2019

Problem 1

Let $\mathbb{N}$ be the set of positive integers. A function $f:\mathbb{N}\to\mathbb{N}$ satisfies the equation \[\underbrace{f(f(\ldots f}_{f(n)\text{ times}}(n)\ldots))=\frac{n^2}{f(f(n))}\]for all positive integers $n$. Given this information, determine all possible values of $f(1000)$.

Solution

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

See also

2019 USAMO (ProblemsResources)
First Problem Followed by
Problem 2
1 2 3 4 5 6
All USAMO Problems and Solutions