Difference between revisions of "Euler's Four-Square Identity"
Lilcritters (talk | contribs) (→Proof) |
Lilcritters (talk | contribs) (→Proof) |
||
Line 5: | Line 5: | ||
First, let us expand the left-hand side of the identity: <cmath>(x_1^2+x_2^2+x_3^2+x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2) = x_1^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2) + x_2^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2) + x_3^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2) + x_4^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2)</cmath> <cmath>= x_1^2 y_1^2 + x_1^2 y_2^2 + x_1^2 y_3^2 + x_1^2 y_4^2 + x_2^2 y_1^2 + x_2^2 y_2^2 + x_2^2 y_3^2 + x_2^2 y_4^2 + x_3^2 y_1^2 + x_3^2 y_2^2 + x_3^2 y_3^2 + x_3^2 y_4^2 + x_4^2 y_1^2 + x_4^2 y_2^2 + x_4^2 y_3^2 + x_4^2 y_4^2.</cmath> Thus, we have <cmath>(x_1^2+x_2^2+x_3^2+x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2) = x_1^2 y_1^2 + x_1^2 y_2^2 + x_1^2 y_3^2 + x_1^2 y_4^2</cmath> <cmath>+ x_2^2 y_1^2 + x_2^2 y_2^2 + x_2^2 y_3^2 + x_2^2 y_4^2</cmath> <cmath>+ x_3^2 y_1^2 + x_3^2 y_2^2 + x_3^2 y_3^2 + x_3^2 y_4^2</cmath> <cmath>+ x_4^2 y_1^2 + x_4^2 y_2^2 + x_4^2 y_3^2 + x_4^2 y_4^2. \text{ (1)}</cmath> | First, let us expand the left-hand side of the identity: <cmath>(x_1^2+x_2^2+x_3^2+x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2) = x_1^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2) + x_2^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2) + x_3^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2) + x_4^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2)</cmath> <cmath>= x_1^2 y_1^2 + x_1^2 y_2^2 + x_1^2 y_3^2 + x_1^2 y_4^2 + x_2^2 y_1^2 + x_2^2 y_2^2 + x_2^2 y_3^2 + x_2^2 y_4^2 + x_3^2 y_1^2 + x_3^2 y_2^2 + x_3^2 y_3^2 + x_3^2 y_4^2 + x_4^2 y_1^2 + x_4^2 y_2^2 + x_4^2 y_3^2 + x_4^2 y_4^2.</cmath> Thus, we have <cmath>(x_1^2+x_2^2+x_3^2+x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2) = x_1^2 y_1^2 + x_1^2 y_2^2 + x_1^2 y_3^2 + x_1^2 y_4^2</cmath> <cmath>+ x_2^2 y_1^2 + x_2^2 y_2^2 + x_2^2 y_3^2 + x_2^2 y_4^2</cmath> <cmath>+ x_3^2 y_1^2 + x_3^2 y_2^2 + x_3^2 y_3^2 + x_3^2 y_4^2</cmath> <cmath>+ x_4^2 y_1^2 + x_4^2 y_2^2 + x_4^2 y_3^2 + x_4^2 y_4^2. \text{ (1)}</cmath> | ||
− | Now, let us expand the first square of the right-hand side of the identity, <math>(x_1y_1+x_2y_2+x_3y_3+x_4y_4)^2</math>: <cmath>(x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4)^2 = (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4)(x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4)</cmath> <cmath>= x_1y_1 (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4) + x_2 y_2 (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4) + x_3 y_3 (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4) + x_4 y_4 (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4)</cmath> <cmath>= x_1^2 y_1^2 + x_1x_2y_1y_2 + x_1x_3y_1y_3 + x_1x_4y_1y_4 + x_1x_2y_1y_2 + x_2^2 y_2^2 + x_2x_3y_2y_3 + x_2x_4y_2y_4 + x_1x_3y_1y_3 + x_2x_3y_2y_3 + x_3^2 y_3^2 + x_3x_4y_3y_4 + x_1x_4y_1y_4 + x_2x_4y_2y_4 + x_3x_4y_3y_4 + x_4^2 y_4^2</cmath> <cmath>= (x_1^2 y_1^2 + x_2^2 y_2^2 + x_3^2 y_3^2 + x_4^2 y_4^2) + (2x_1x_2y_1y_2 + 2x_1x_3y_1y_3 + 2x_1x_4y_1y_4 + 2x_2x_3y_2y_3 + 2x_2x_4y_2y_4 + 2x_3x_4y_3y_4).</cmath> | + | Now, let us expand the first square of the right-hand side of the identity, <math>(x_1y_1+x_2y_2+x_3y_3+x_4y_4)^2</math>: <cmath>(x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4)^2 = (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4)(x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4)</cmath> <cmath>= x_1y_1 (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4) + x_2 y_2 (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4) + x_3 y_3 (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4) + x_4 y_4 (x_1 y_1 + x_2 y_2 + x_3 y_3 + x_4 y_4)</cmath> <cmath>= x_1^2 y_1^2 + x_1x_2y_1y_2 + x_1x_3y_1y_3 + x_1x_4y_1y_4 + x_1x_2y_1y_2 + x_2^2 y_2^2 + x_2x_3y_2y_3 + x_2x_4y_2y_4 + x_1x_3y_1y_3 + x_2x_3y_2y_3 + x_3^2 y_3^2 + x_3x_4y_3y_4 + x_1x_4y_1y_4 + x_2x_4y_2y_4 + x_3x_4y_3y_4 + x_4^2 y_4^2</cmath> <cmath>= (x_1^2 y_1^2 + x_2^2 y_2^2 + x_3^2 y_3^2 + x_4^2 y_4^2) + (2x_1x_2y_1y_2 + 2x_1x_3y_1y_3 + 2x_1x_4y_1y_4 + 2x_2x_3y_2y_3 + 2x_2x_4y_2y_4 + 2x_3x_4y_3y_4).</cmath> Therefore, we now also have <cmath>(x_1y_1+x_2y_2+x_3y_3+x_4y_4)^2 = (x_1^2 y_1^2 + x_2^2 y_2^2 + x_3^2 y_3^2 + x_4^2 y_4^2) + (2x_1x_2y_1y_2 + 2x_1x_3y_1y_3 + 2x_1x_4y_1y_4 + 2x_2x_3y_2y_3 + 2x_2x_4y_2y_4 + 2x_3x_4y_3y_4). \text{ (1)}</cmath> |
Next, let us expand the second square of the right-hand side of the identity, <math>(x_1y_2-x_2y_1+x_3y_4-x_4y_3)^2</math>: <cmath>(x_1y_2-x_2y_1+x_3y_4-x_4y_3)^2 = (x_1y_2-x_2y_1+x_3y_4-x_4y_3)(x_1y_2-x_2y_1+x_3y_4-x_4y_3)</cmath> <cmath>= x_1y_2 \cdot (x_1y_2-x_2y_1+x_3y_4-x_4y_3) - x_2y_1 \cdot (x_1y_2-x_2y_1+x_3y_4-x_4y_3) + x_3y_4 \cdot (x_1y_2-x_2y_1+x_3y_4-x_4y_3) - x_4y_3 \cdot (x_1y_2-x_2y_1+x_3y_4-x_4y_3)</cmath> <cmath> = x_1^2 y_2^2 - x_1x_2y_1y_2 + x_1x_3y_2y_4 - x_1x_4y_2y_3 - x_1x_2y_1y_2 + x_2^2y_1^2 - x_2x_3y_1y_4 + x_2x_4y_1y_3 + x_1x_3y_2y_4 - x_2x_3y_2y_4 + x_3^2y_4^2 - x_3x_4y_3y_4 - x_1x_4y_2y_3 + x_2x_4y_1y_3 - x_3x_4y_3y_4 + x_4^2 y_3^2</cmath> | Next, let us expand the second square of the right-hand side of the identity, <math>(x_1y_2-x_2y_1+x_3y_4-x_4y_3)^2</math>: <cmath>(x_1y_2-x_2y_1+x_3y_4-x_4y_3)^2 = (x_1y_2-x_2y_1+x_3y_4-x_4y_3)(x_1y_2-x_2y_1+x_3y_4-x_4y_3)</cmath> <cmath>= x_1y_2 \cdot (x_1y_2-x_2y_1+x_3y_4-x_4y_3) - x_2y_1 \cdot (x_1y_2-x_2y_1+x_3y_4-x_4y_3) + x_3y_4 \cdot (x_1y_2-x_2y_1+x_3y_4-x_4y_3) - x_4y_3 \cdot (x_1y_2-x_2y_1+x_3y_4-x_4y_3)</cmath> <cmath> = x_1^2 y_2^2 - x_1x_2y_1y_2 + x_1x_3y_2y_4 - x_1x_4y_2y_3 - x_1x_2y_1y_2 + x_2^2y_1^2 - x_2x_3y_1y_4 + x_2x_4y_1y_3 + x_1x_3y_2y_4 - x_2x_3y_2y_4 + x_3^2y_4^2 - x_3x_4y_3y_4 - x_1x_4y_2y_3 + x_2x_4y_1y_3 - x_3x_4y_3y_4 + x_4^2 y_3^2</cmath> |
Revision as of 08:35, 29 March 2019
Identity
The Four-Square Identity, credited to Leonhard Euler, states that for any eight complex numbers , we must have
Proof
First, let us expand the left-hand side of the identity: Thus, we have
Now, let us expand the first square of the right-hand side of the identity, : Therefore, we now also have
Next, let us expand the second square of the right-hand side of the identity, :