Difference between revisions of "2019 AIME I Problems/Problem 13"
Franchester (talk | contribs) (→Solution) |
|||
Line 3: | Line 3: | ||
Triangle <math>ABC</math> has side lengths <math>AB=4</math>, <math>BC=5</math>, and <math>CA=6</math>. Points <math>D</math> and <math>E</math> are on ray <math>AB</math> with <math>AB<AD<AE</math>. The point <math>F \neq C</math> is a point of intersection of the circumcircles of <math>\triangle ACD</math> and <math>\triangle EBC</math> satisfying <math>DF=2</math> and <math>EF=7</math>. Then <math>BE</math> can be expressed as <math>\tfrac{a+b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers such that <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | Triangle <math>ABC</math> has side lengths <math>AB=4</math>, <math>BC=5</math>, and <math>CA=6</math>. Points <math>D</math> and <math>E</math> are on ray <math>AB</math> with <math>AB<AD<AE</math>. The point <math>F \neq C</math> is a point of intersection of the circumcircles of <math>\triangle ACD</math> and <math>\triangle EBC</math> satisfying <math>DF=2</math> and <math>EF=7</math>. Then <math>BE</math> can be expressed as <math>\tfrac{a+b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers such that <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>. | ||
− | ==Solution== | + | ==Solution 1== |
Define <math>\omega_1</math> to be the circumcircle of <math>\triangle ACD</math> and <math>\omega_2</math> to be the circumcircle of <math>\triangle EBC</math>. | Define <math>\omega_1</math> to be the circumcircle of <math>\triangle ACD</math> and <math>\omega_2</math> to be the circumcircle of <math>\triangle EBC</math>. | ||
Line 28: | Line 28: | ||
Note that <math>\triangle GAC</math> is similar to <math>\triangle GFD</math>. <math>GF = \frac{BG + 4}{3}</math>. Also note that <math>\triangle GBC</math> is similar to <math>\triangle GFE</math>, which gives us <math>GF = \frac{7 \cdot BG}{5}</math>. Solving this system of linear equations, we get <math>BG = \frac{5}{4}</math>. Now, we can solve for <math>BE</math>, which is equal to <math>BG(\sqrt{2} + 1) + 4\sqrt{2}</math>. This simplifies to <math>\frac{5 + 21\sqrt{2}}{4}</math>, which means our answer is <math>\boxed{032}</math>. | Note that <math>\triangle GAC</math> is similar to <math>\triangle GFD</math>. <math>GF = \frac{BG + 4}{3}</math>. Also note that <math>\triangle GBC</math> is similar to <math>\triangle GFE</math>, which gives us <math>GF = \frac{7 \cdot BG}{5}</math>. Solving this system of linear equations, we get <math>BG = \frac{5}{4}</math>. Now, we can solve for <math>BE</math>, which is equal to <math>BG(\sqrt{2} + 1) + 4\sqrt{2}</math>. This simplifies to <math>\frac{5 + 21\sqrt{2}}{4}</math>, which means our answer is <math>\boxed{032}</math>. | ||
+ | |||
+ | ==Solution 2== | ||
+ | Construct <math>FC</math> and let <math>FC\cap AE=K</math>. Let <math>FK=x</math>. Using <math>\triangle FKE\sim \triangle BKC</math>, <cmath>BK=\frac{5}{7}x</cmath> Using <math>\triangle FDK\sim ACK</math>, it can be found taht <cmath>3x=AK=4+\frac{5}{7}x\to x=\frac{7}{4}</cmath> This also means that <math>BK=\frac{21}{4}-4=\frac{5}{4}</math>. It suffices to find <math>KE</math>. It is easy to see the following: <cmath>180-\angle ABC=\angle KBC=\angle KFE</cmath> Using reverse Law of Cosines on <math>\triangle ABC</math>, <math>\cos{\angle ABC}=\frac{1}{8}\to \cos{180-\angle ABC}=\frac{-1}{8}</math>. Using Law of Cosines on <math>\triangle EFK</math> gives <math>KE=\frac{21\sqrt 2}{4}</math>, so <math>BE=\frac{5+21\sqrt 2}{4}\to \textbf{032}</math>. | ||
==See Also== | ==See Also== | ||
{{AIME box|year=2019|n=I|num-b=12|num-a=14}} | {{AIME box|year=2019|n=I|num-b=12|num-a=14}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 15:29, 15 March 2019
Contents
Problem 13
Triangle has side lengths
,
, and
. Points
and
are on ray
with
. The point
is a point of intersection of the circumcircles of
and
satisfying
and
. Then
can be expressed as
, where
,
,
, and
are positive integers such that
and
are relatively prime, and
is not divisible by the square of any prime. Find
.
Solution 1
Define to be the circumcircle of
and
to be the circumcircle of
.
Because of exterior angles,
But because
is cyclic. In addition,
because
is cyclic. Therefore,
. But
, so
. Using Law of Cosines on
, we can figure out that
. Since
,
. We are given that
and
, so we can use Law of Cosines on
to find that
.
Let be the intersection of segment
and
. Using Power of a Point with respect to
within
, we find that
. We can also apply Power of a Point with respect to
within
to find that
. Therefore,
.
Note that is similar to
.
. Also note that
is similar to
, which gives us
. Solving this system of linear equations, we get
. Now, we can solve for
, which is equal to
. This simplifies to
, which means our answer is
.
Solution 2
Construct and let
. Let
. Using
,
Using
, it can be found taht
This also means that
. It suffices to find
. It is easy to see the following:
Using reverse Law of Cosines on
,
. Using Law of Cosines on
gives
, so
.
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.