Difference between revisions of "1990 AIME Problems/Problem 13"
m (→Problem) |
Chessmaster3 (talk | contribs) m (→Problem) |
||
Line 2: | Line 2: | ||
Let <math>T = \{9^k : k ~ \mbox{is an integer}, 0 \le k \le 4000\}</math>. Given that <math>9^{4000}_{}</math> has 3817 [[digit]]s and that its first (leftmost) digit is 9, how many [[element]]s of <math>T_{}^{}</math> have 9 as their leftmost digit? | Let <math>T = \{9^k : k ~ \mbox{is an integer}, 0 \le k \le 4000\}</math>. Given that <math>9^{4000}_{}</math> has 3817 [[digit]]s and that its first (leftmost) digit is 9, how many [[element]]s of <math>T_{}^{}</math> have 9 as their leftmost digit? | ||
− | + | ==Solution== | |
Since <math>9^{4000}</math> has 3816 digits more than <math>9^1</math>, <math>4000 - 3816 = \boxed{184}</math> numbers have 9 as their leftmost digits. | Since <math>9^{4000}</math> has 3816 digits more than <math>9^1</math>, <math>4000 - 3816 = \boxed{184}</math> numbers have 9 as their leftmost digits. |
Revision as of 22:51, 10 March 2019
Problem
Let . Given that has 3817 digits and that its first (leftmost) digit is 9, how many elements of have 9 as their leftmost digit?
Solution
Since has 3816 digits more than , numbers have 9 as their leftmost digits.
See also
1990 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.