Difference between revisions of "1983 AHSME Problems/Problem 19"

(Added a solution)
 
m (Fixed formatting)
 
(One intermediate revision by the same user not shown)
Line 13: Line 13:
 
==Solution==
 
==Solution==
  
Let <math>AD = y</math>. Since <math>AD</math> bisects <math>\angle{BAC}</math>, the Angle Bisector Theorem gives <math>\frac{DB}{CD} = \frac{AB}{AC} = 2</math>, so write <math>CD = x</math> and <math>DB = 2x</math>. Applying the Law of Cosines to <math>\triangle CAD</math> gives <math>x^2 = 3^2 + y^2 - 3y</math>, and to <math>\triangle DAB</math> gives <math>(2x)^2 = 6^2 + y^2 - 6y</math>. Subtracting <math>4</math> times the first equation from the second equation therefore yields <math>0 = 6y - 3y^2 \Rightarrow y(y-2) = 0</math>, so <math>y</math> is <math>0</math> or <math>2</math>. But since <math>y \neq 0</math> (<math>y</math> is the length of a side of a triangle), <math>y</math> must be <math>2</math>, so the answer is <math>\boxed{\textbf{A}}</math>.
+
Let <math>AD = y</math>. Since <math>AD</math> bisects <math>\angle{BAC}</math>, the Angle Bisector Theorem gives <math>\frac{DB}{CD} = \frac{AB}{AC} = 2</math>, so let <math>CD = x</math> and <math>DB = 2x</math>. Applying the Law of Cosines to <math>\triangle CAD</math> gives <math>x^2 = 3^2 + y^2 - 3y</math>, and to <math>\triangle DAB</math> gives <math>(2x)^2 = 6^2 + y^2 - 6y</math>. Subtracting <math>4</math> times the first equation from the second equation therefore yields <math>0 = 6y - 3y^2 \Rightarrow y(y-2) = 0</math>, so <math>y</math> is <math>0</math> or <math>2</math>. But since <math>y \neq 0</math> (<math>y</math> is the length of a side of a triangle), <math>y</math> must be <math>2</math>, so the answer is <math>\boxed{\textbf{(A)} \ 2}</math>.
 +
 
 +
==See Also==
 +
{{AHSME box|year=1983|num-b=18|num-a=20}}
 +
 
 +
{{MAA Notice}}

Latest revision as of 23:57, 19 February 2019

Problem

Point $D$ is on side $CB$ of triangle $ABC$. If $\angle{CAD} = \angle{DAB} = 60^\circ\mbox{, }AC = 3\mbox{ and }AB = 6$, then the length of $AD$ is

$\textbf{(A)} \ 2 \qquad  \textbf{(B)} \ 2.5 \qquad  \textbf{(C)} \ 3 \qquad  \textbf{(D)} \ 3.5 \qquad  \textbf{(E)} \ 4$

Solution

Let $AD = y$. Since $AD$ bisects $\angle{BAC}$, the Angle Bisector Theorem gives $\frac{DB}{CD} = \frac{AB}{AC} = 2$, so let $CD = x$ and $DB = 2x$. Applying the Law of Cosines to $\triangle CAD$ gives $x^2 = 3^2 + y^2 - 3y$, and to $\triangle DAB$ gives $(2x)^2 = 6^2 + y^2 - 6y$. Subtracting $4$ times the first equation from the second equation therefore yields $0 = 6y - 3y^2 \Rightarrow y(y-2) = 0$, so $y$ is $0$ or $2$. But since $y \neq 0$ ($y$ is the length of a side of a triangle), $y$ must be $2$, so the answer is $\boxed{\textbf{(A)} \ 2}$.

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png