Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 2"
m |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | The set <math>\displaystyle S</math> consists of all | + | The [[set]] <math>\displaystyle S</math> consists of all [[integer]]s from <math>\displaystyle 1</math> to <math>\displaystyle 2007</math>, inclusive. For how many [[element]]s <math>\displaystyle n</math> in <math>\displaystyle S</math> is <math>\displaystyle f(n) = \frac{2n^3+n^2-n-2}{n^2-1}</math> an integer? |
==Solution== | ==Solution== | ||
− | {{ | + | <math>f(n) = \frac{2n^3+n^2-n-2}{n^2-1} = \frac{(n - 1)(2n^2 + 3n + 2)}{(n - 1)(n + 1)} = \frac{2n^2 + 3n + 2}{n + 1} = 2n + 1 + \frac1{n+1}</math>. So in fact, there are 0 such elements of <math>S</math>. |
---- | ---- |