Mock AIME 3 Pre 2005 Problems/Problem 15
(Redirected from Mock AIME 3 Pre 2005/Problem 15)
Problem
Let denote the value of the sum
The value of can be expressed as , where and are relatively prime positive integers. Compute .
Solution
Let
Factoring the radicand, we have The fraction looks remarkably apt for a trigonometric substitution; namely, define such that . Then the RHS becomes But Therefore, This gives us So now When we sum , this sum now telescopes: Therefore, the required value giving us the desired answer of .
See Also
Mock AIME 3 Pre 2005 (Problems, Source) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |